BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11746776)

  • 1. Three-dimensional distribution of astrocytes in zebrafish spinal cord.
    Kawai H; Arata N; Nakayasu H
    Glia; 2001 Dec; 36(3):406-13. PubMed ID: 11746776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord.
    Labombarda F; Gonzalez S; Roig P; Lima A; Guennoun R; Schumacher M; De Nicola AF
    J Steroid Biochem Mol Biol; 2000 Jun; 73(3-4):159-69. PubMed ID: 10925216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of glial fibrillary acidic proteins immunoreactivity in astrocytes of the spinal cord diabetic rats.
    Afsari ZH; Renno WM; Abd-El-Basset E
    Anat Rec (Hoboken); 2008 Apr; 291(4):390-9. PubMed ID: 18360886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of glial fibrillary acidic protein and astroglial architecture in the brain of a continuously growing fish, the rainbow trout.
    Alunni A; Vaccari S; Torcia S; Meomartini ME; Nicotra A; Alfei L
    Eur J Histochem; 2005; 49(2):157-66. PubMed ID: 15967744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional specialization of the radial glial cells of the adult frog spinal cord.
    Miller RH; Liuzzi FJ
    J Neurocytol; 1986 Apr; 15(2):187-96. PubMed ID: 3522809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vimentin-GFAP transition in primary dissociated cultures of rat embryo spinal cord.
    Bignami A; Dahl D
    Int J Dev Neurosci; 1989; 7(4):343-57. PubMed ID: 2773670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. II. Mesencephalon, rhombencephalon and spinal cord.
    Hajós F; Kálmán M
    Exp Brain Res; 1989; 78(1):164-73. PubMed ID: 2591510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connexin-43 in rat spinal cord: localization in astrocytes and identification of heterotypic astro-oligodendrocytic gap junctions.
    Ochalski PA; Frankenstein UN; Hertzberg EL; Nagy JI
    Neuroscience; 1997 Feb; 76(3):931-45. PubMed ID: 9135062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.
    Chvátal A; Andĕrová M; Ziak D; Orkand RK; Syková E
    Neurosci Res; 2001 May; 40(1):23-35. PubMed ID: 11311402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radially oriented astrocytes in the normal adult rat spinal cord.
    Liuzzi FJ; Miller RH
    Brain Res; 1987 Feb; 403(2):385-8. PubMed ID: 2435373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of brain-specific hyaluronectin (BHN), a hyaluronate-binding protein, in dog postnatal development.
    Bignami A; Dahl D
    Exp Neurol; 1988 Jan; 99(1):107-17. PubMed ID: 2446903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial astrocytes and ependymocytes in the spinal cord of the adult toad (Bufo bufo L.). An immunohistochemical and ultrastructural study.
    Bodega G; Suárez I; Fernández B
    Cell Tissue Res; 1990 May; 260(2):307-14. PubMed ID: 2113429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of Hoxa-2 protein along the dorsal-ventral axis of the developing and adult mouse spinal cord.
    Hao Z; Yeung J; Wolf L; Doucette R; Nazarali A
    Dev Dyn; 1999 Oct; 216(2):201-17. PubMed ID: 10536059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tenascin-C expression by neurons and glial cells in the rat spinal cord: changes during postnatal development and after dorsal root or sciatic nerve injury.
    Zhang Y; Anderson PN; Campbell G; Mohajeri H; Schachner M; Lieberman AR
    J Neurocytol; 1995 Aug; 24(8):585-601. PubMed ID: 7595667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal astrocyte differentiation and defective cellular interactions in wobbler mouse spinal cord.
    Hantaz-Ambroise D; Blondet B; Murawsky M; Rieger F
    J Neurocytol; 1994 Mar; 23(3):179-92. PubMed ID: 8006678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miRNAs are required for the terminal differentiation of white matter astrocytes in the developing CNS.
    Li X; Chen Y; Chi Q; Hu X; Xu X; Zhang Z; Qiu M; Zheng K
    Neuroscience; 2016 Jan; 312():99-107. PubMed ID: 26556063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of radial glia from radial precursor cells and transformation into astrocytes in the developing rat spinal cord.
    Barry D; McDermott K
    Glia; 2005 May; 50(3):187-97. PubMed ID: 15682427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential histochemical staining of protoplasmic and fibrous astrocytes in rat CNS with GFAP antibodies using different fixatives.
    Shehab SA; Cronly-Dillon JR; Nona SN; Stafford CA
    Brain Res; 1990 Jun; 518(1-2):347-52. PubMed ID: 2202491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monoclonal antibody stains radial glia in the adult zebrafish (Danio rerio) CNS.
    Tomizawa K; Inoue Y; Nakayasu H
    J Neurocytol; 2000 Feb; 29(2):119-28. PubMed ID: 11068340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.