These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 11746899)
1. Alkaline liquid chromatography/electrospray ionization skimmer collision-induced dissociation mass spectrometry for phosphopeptide screening. Beck A; Deeg M; Moeschel K; Schmidt EK; Schleicher ED; Voelter W; Häring HU; Lehmann R Rapid Commun Mass Spectrom; 2001; 15(23):2324-33. PubMed ID: 11746899 [TBL] [Abstract][Full Text] [Related]
2. Identification of phosphorylated peptides from complex mixtures using negative-ion orifice-potential stepping and capillary liquid chromatography/electrospray ionization mass spectrometry. Ding J; Burkhart W; Kassel DB Rapid Commun Mass Spectrom; 1994 Jan; 8(1):94-8. PubMed ID: 8118063 [TBL] [Abstract][Full Text] [Related]
3. Phosphate group-driven fragmentation of multiply charged phosphopeptide anions. Improved recognition of peptides phosphorylated at serine, threonine, or tyrosine by negative ion electrospray tandem mass spectrometry. Edelson-Averbukh M; Pipkorn R; Lehmann WD Anal Chem; 2006 Feb; 78(4):1249-56. PubMed ID: 16478119 [TBL] [Abstract][Full Text] [Related]
4. Characterization of cysteinylation of pharmaceutical-grade human serum albumin by electrospray ionization mass spectrometry and low-energy collision-induced dissociation tandem mass spectrometry. Kleinova M; Belgacem O; Pock K; Rizzi A; Buchacher A; Allmaier G Rapid Commun Mass Spectrom; 2005; 19(20):2965-73. PubMed ID: 16178042 [TBL] [Abstract][Full Text] [Related]
5. Formation of phosphopeptide-metal ion complexes in liquid chromatography/electrospray mass spectrometry and their influence on phosphopeptide detection. Liu S; Zhang C; Campbell JL; Zhang H; Yeung KK; Han VK; Lajoie GA Rapid Commun Mass Spectrom; 2005; 19(19):2747-56. PubMed ID: 16136520 [TBL] [Abstract][Full Text] [Related]
7. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis. Wang N; Li L Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145 [TBL] [Abstract][Full Text] [Related]
8. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis. Wu HY; Tseng VS; Liao PC J Proteome Res; 2007 May; 6(5):1812-21. PubMed ID: 17402769 [TBL] [Abstract][Full Text] [Related]
9. Detection of tyrosine phosphorylated peptides via skimmer collision-induced dissociation/ion trap mass spectrometry. Zolodz MD; Wood KV J Mass Spectrom; 2003 Mar; 38(3):257-64. PubMed ID: 12644986 [TBL] [Abstract][Full Text] [Related]
10. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection. Tomlinson AJ; Chicz RM Rapid Commun Mass Spectrom; 2003; 17(9):909-16. PubMed ID: 12717763 [TBL] [Abstract][Full Text] [Related]
11. Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Carr SA; Huddleston MJ; Annan RS Anal Biochem; 1996 Aug; 239(2):180-92. PubMed ID: 8811904 [TBL] [Abstract][Full Text] [Related]
12. Selective sampling of multiply phosphorylated peptides by capillary electrophoresis for electrospray ionization mass spectrometry analysis. Ballard JN; Lajoie GA; Yeung KK J Chromatogr A; 2007 Jul; 1156(1-2):101-10. PubMed ID: 17188697 [TBL] [Abstract][Full Text] [Related]
13. Differentiation of phosphorylated and unphosphorylated peptides by high-performance liquid chromatography-electrospray ionization-infrared multiphoton dissociation in a quadrupole ion trap. Crowe MC; Brodbelt JS Anal Chem; 2005 Sep; 77(17):5726-34. PubMed ID: 16131088 [TBL] [Abstract][Full Text] [Related]
14. Ligand-exchange detection of phosphorylated peptides using liquid chromatography electrospray mass spectrometry. Krabbe JG; Lingeman H; Niessen WM; Irth H Anal Chem; 2003 Dec; 75(24):6853-60. PubMed ID: 14670045 [TBL] [Abstract][Full Text] [Related]
15. Separation and detection of phosphorylated and nonphosphorylated peptides in liquid chromatography-mass spectrometry using monolithic columns and acidic or alkaline mobile phases. Tholey A; Toll H; Huber CG Anal Chem; 2005 Jul; 77(14):4618-25. PubMed ID: 16013881 [TBL] [Abstract][Full Text] [Related]
16. Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins. Hunter AP; Games DE Rapid Commun Mass Spectrom; 1994 Jul; 8(7):559-70. PubMed ID: 8075429 [TBL] [Abstract][Full Text] [Related]
17. Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Thalassinos K; Grabenauer M; Slade SE; Hilton GR; Bowers MT; Scrivens JH Anal Chem; 2009 Jan; 81(1):248-54. PubMed ID: 19117454 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Palumbo AM; Reid GE Anal Chem; 2008 Dec; 80(24):9735-47. PubMed ID: 19012417 [TBL] [Abstract][Full Text] [Related]
19. Study of the dissociation of a charge-reduced phosphopeptide formed by electron transfer from an alkali metal target. Hayakawa S; Hashimoto M; Nagao H; Awazu K; Toyoda M; Ichihara T; Shigeri Y Rapid Commun Mass Spectrom; 2008; 22(4):567-72. PubMed ID: 18229886 [TBL] [Abstract][Full Text] [Related]
20. Collision-induced dissociation of the A + 2 isotope ion facilitates glucosinolates structure elucidation by electrospray ionization-tandem mass spectrometry with a linear quadrupole ion trap. Cataldi TR; Lelario F; Orlando D; Bufo SA Anal Chem; 2010 Jul; 82(13):5686-96. PubMed ID: 20521824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]