BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11746900)

  • 1. Loss of charged versus neutral heme from gaseous holomyoglobin ions.
    Chrisman PA; Newton KA; Reid GE; Wells JM; McLuckey SA
    Rapid Commun Mass Spectrom; 2001; 15(23):2334-40. PubMed ID: 11746900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of heme from gaseous myoglobin ions studied by infrared multiphoton dissociation spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry.
    Wang YS; Sabu S; Wei SC; Josh Kao CM; Kong X; Liau SC; Han CC; Chang HC; Tu SY; Kung AH; Zhang JZ
    J Chem Phys; 2006 Oct; 125(13):133310. PubMed ID: 17029463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coulomb effects in binding of heme in gas-phase ions of myoglobin.
    Mark KJ; Douglas DJ
    Rapid Commun Mass Spectrom; 2006; 20(2):111-7. PubMed ID: 16331725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion/ion chemistry of high-mass multiply charged ions.
    McLuckey SA; Stephenson JL
    Mass Spectrom Rev; 1998; 17(6):369-407. PubMed ID: 10360331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of a highly charged noncovalent complex in the gas phase: holomyoglobin.
    Chen YL; Campbell JM; Collings BA; Konermann L; Douglas DJ
    Rapid Commun Mass Spectrom; 1998; 12(15):1003-10. PubMed ID: 9720319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen/deuterium exchange of myoglobin ions in a linear quadrupole ion trap.
    Mao D; Ding C; Douglas DJ
    Rapid Commun Mass Spectrom; 2002; 16(20):1941-5. PubMed ID: 12362385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation reactions of gaseous ferro-, ferri-, and apo-cytochrome c ions.
    Wells JM; Reid GE; Engel BJ; Pan P; McLuckey SA
    J Am Soc Mass Spectrom; 2001 Jul; 12(7):873-6. PubMed ID: 11444611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of electrostatic interactions on the detection of heme-globin complexes in ESI-MS.
    Schmidt A; Karas M
    J Am Soc Mass Spectrom; 2001 Oct; 12(10):1092-8. PubMed ID: 11605970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituent effects on the gas-phase fragmentation reactions of sulfonium ion containing peptides.
    Sierakowski J; Amunugama M; Roberts KD; Reid GE
    Rapid Commun Mass Spectrom; 2007; 21(7):1230-8. PubMed ID: 17330214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of high-oxidation states of myoglobin in the nanosecond time-scale by laser photoionization.
    Candeias LP; Steenken S
    Photochem Photobiol; 1998 Jul; 68(1):39-43. PubMed ID: 9679449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro-oxidative characteristics of trout hemoglobin and myoglobin: a role for released heme in oxidation of lipids.
    Richards MP; Dettmann MA; Grunwald EW
    J Agric Food Chem; 2005 Dec; 53(26):10231-8. PubMed ID: 16366720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of heme from myoglobin and cytochrome b5: comparison of behavior in solution and the gas phase.
    Hunter CL; Mauk AG; Douglas DJ
    Biochemistry; 1997 Feb; 36(5):1018-25. PubMed ID: 9033391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-transfer reactions of mass-selected multiply charged ions.
    Hunter AP; Severs JC; Harris FM; Games DE
    Rapid Commun Mass Spectrom; 1994 May; 8(5):417-22. PubMed ID: 8025337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision-induced dissociation of glycero phospholipids using electrospray ion-trap mass spectrometry.
    Larsen A; Uran S; Jacobsen PB; Skotland T
    Rapid Commun Mass Spectrom; 2001; 15(24):2393-8. PubMed ID: 11746908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein identification via ion-trap collision-induced dissociation and examination of low-mass product ions.
    Bowers JJ; Liu J; Gunawardena HP; McLuckey SA
    J Mass Spectrom; 2008 Jan; 43(1):23-34. PubMed ID: 17613176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion activation methods for tandem mass spectrometry.
    Sleno L; Volmer DA
    J Mass Spectrom; 2004 Oct; 39(10):1091-112. PubMed ID: 15481084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry.
    Schroeder MJ; Shabanowitz J; Schwartz JC; Hunt DF; Coon JJ
    Anal Chem; 2004 Jul; 76(13):3590-8. PubMed ID: 15228329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on interaction between heme-iron of myoglobin and metal ions by visible spectroscopy (I)].
    Tang Q; Zheng XF; Wang JY; Liu YY; Yuan YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1958-61. PubMed ID: 19798981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the origin of the abundance distribution of apomyoglobin multiply charged ions in electrospray mass spectrometry.
    Meunier C; Jamin M; De Pauw E
    Rapid Commun Mass Spectrom; 1998; 12(5):239-45. PubMed ID: 9519476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.