These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11747095)

  • 1. Observation of impurities in ice.
    Cullen D; Baker I
    Microsc Res Tech; 2001 Nov; 55(3):198-207. PubMed ID: 11747095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SEM/EDS comparison of polar and seasonal temperate ice.
    Obbard R; Iliescu D; Cullen D; Chang J; Baker I
    Microsc Res Tech; 2003 Sep; 62(1):49-61. PubMed ID: 12938117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SEM studies of the morphology and chemistry of polar ice.
    Barnes PR; Wolff EW; Mallard DC; Mader HM
    Microsc Res Tech; 2003 Sep; 62(1):62-9. PubMed ID: 12938118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of aqueous standards for low temperature X-ray microanalysis.
    Reid AP; Potts WT; Oates K; Mulvaney R; Wolff EW
    Microsc Res Tech; 1992 Jul; 22(2):207-11. PubMed ID: 1504352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-structure characterization of experimentally and naturally deformed ice using cryo-EBSD.
    Piazolo S; Montagnat M; Blackford JR
    J Microsc; 2008 Jun; 230(Pt 3):509-19. PubMed ID: 18503677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artifacts in energy dispersive x-ray spectrometry in the scanning electron microscope (II).
    Fiori CE; Newbury DE
    Scan Electron Microsc; 1980; (Pt 2):251-8, 250. PubMed ID: 7423119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative investigation of sulfur and chlorine in human head hairs by energy dispersive x-ray microanalysis.
    Seta S; Sato H; Yoshino M
    Scan Electron Microsc; 1979; (2):193-201. PubMed ID: 524000
    [No Abstract]   [Full Text] [Related]  

  • 8. The efficiency of X-ray microanalysis in low-vacuum scanning electron microscope: deposition of calcium on the surface of implanted hydrogel intraocular lens (IOL).
    Sato S; Matsui H; Sasaki Y; Oharazawa H; Nishimura M; Adachi A; Nakazawa E; Takahashi H
    J Submicrosc Cytol Pathol; 2006 Apr; 38(1):1-4. PubMed ID: 17283961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging dislocations in ice.
    Baker I
    Microsc Res Tech; 2003 Sep; 62(1):70-82. PubMed ID: 12938119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-related problems associated with X-ray microanalysis in the variable pressure scanning electron microscope at low pressures.
    Griffin BJ; Suvorova AA
    Microsc Microanal; 2003 Apr; 9(2):155-65. PubMed ID: 12639242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The X-ray microanalysis method for investigation of chemical composition of normal and pathologic human peripheral blood lymphocytes.
    Pilch J; Laskawiec J; Lisiewicz J
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1988; 115(5):727-35. PubMed ID: 2465254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast thermal desorption spectroscopy study of H/D isotopic exchange reaction in polycrystalline ice near its melting point.
    Lu H; McCartney SA; Sadtchenko V
    J Chem Phys; 2007 Nov; 127(18):184701. PubMed ID: 18020652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the orientations of ice crystals using electron backscatter patterns.
    Iliescu D; Baker I; Chang H
    Microsc Res Tech; 2004 Mar; 63(4):183-7. PubMed ID: 14988914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H/D exchange kinetics in pure and HCl doped polycrystalline ice at temperatures near its melting point: structure, chemical transport, and phase transitions at grain boundaries.
    Lu H; McCartney SA; Sadtchenko V
    J Chem Phys; 2009 Feb; 130(5):054501. PubMed ID: 19206978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, principles, and applications of automated ice fabric analyzers.
    Wilen LA; Diprinzio CL; Alley RB; Azuma N
    Microsc Res Tech; 2003 Sep; 62(1):2-18. PubMed ID: 12938114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The energy-dispersive x-ray microanalysis with the scanning electron microscope. Applications in biology and medicine (author's transl)].
    Hantsche H
    Microsc Acta; 1974 May; 75(5):409-18 contd. PubMed ID: 4837164
    [No Abstract]   [Full Text] [Related]  

  • 17. Development of a new analytical electron microscopy technique to quantify the chemistry of planar defects and to measure accurately solute segregation to grain boundaries.
    Walther T
    J Microsc; 2004 Aug; 215(Pt 2):191-202. PubMed ID: 15315506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the influence of alloying elements and impurities on the localized reactivity of titanium grade-7 by scanning electrochemical microscopy.
    Zhu R; Qin Z; Noël JJ; Shoesmith DW; Ding Z
    Anal Chem; 2008 Mar; 80(5):1437-47. PubMed ID: 18247518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool.
    Kotula PG; Keenan MR; Michael JR
    Microsc Microanal; 2003 Feb; 9(1):1-17. PubMed ID: 12597783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Energy dispersive x-ray analysis and scanning electron microscopic observation on cartilage of the mandibular condyle (author's transl)].
    Fujimoto M; Goto K; Takiguchi R
    Kaibogaku Zasshi; 1981 Apr; 56(2):72-8. PubMed ID: 7293727
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.