These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 11747249)
1. Quantitative analysis of end-tidal carbon dioxide during mechanical and spontaneous ventilation in infants and young children. Hsieh KS; Lee CL; Lin CC; Wu SN; Ko FY; Huang YF; Huang TC Pediatr Pulmonol; 2001 Dec; 32(6):453-8. PubMed ID: 11747249 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of end-tidal carbon dioxide monitoring using the NBP-75 microstream capnometer. A study in intubated ventilated and spontaneously breathing nonintubated patients. Casati A; Gallioli G; Scandroglio M; Passaretta R; Borghi B; Torri G Eur J Anaesthesiol; 2000 Oct; 17(10):622-6. PubMed ID: 11050520 [TBL] [Abstract][Full Text] [Related]
3. Effect of synchronized intermittent mandatory ventilation on respiratory workload in infants after cardiac surgery. Imanaka H; Nishimura M; Miyano H; Uemura H; Yagihara T Anesthesiology; 2001 Oct; 95(4):881-8. PubMed ID: 11605928 [TBL] [Abstract][Full Text] [Related]
4. Predictors of extubation success and failure in mechanically ventilated infants and children. Khan N; Brown A; Venkataraman ST Crit Care Med; 1996 Sep; 24(9):1568-79. PubMed ID: 8797633 [TBL] [Abstract][Full Text] [Related]
5. End-tidal carbon dioxide as a measure of arterial carbon dioxide during intermittent mandatory ventilation. Weinger MB; Brimm JE J Clin Monit; 1987 Apr; 3(2):73-9. PubMed ID: 3108465 [TBL] [Abstract][Full Text] [Related]
6. Monitoring interactions between spontaneous respiration and mechanical inflations in preterm neonates. Bignall S; Dixon P; Quinn C; Kitney R Crit Care Med; 1997 Mar; 25(3):545-53. PubMed ID: 9118675 [TBL] [Abstract][Full Text] [Related]
7. Comparing the Effects of Two Different Levels of Hyperoxygenation on Gas Exchange During Open Endotracheal Suctioning: A Randomized Crossover Study. Vianna JR; Pires Di Lorenzo VA; Simões MM; Jamami M Respir Care; 2017 Jan; 62(1):92-101. PubMed ID: 28003557 [TBL] [Abstract][Full Text] [Related]
8. Validation of predictors of extubation success and failure in mechanically ventilated infants and children. Venkataraman ST; Khan N; Brown A Crit Care Med; 2000 Aug; 28(8):2991-6. PubMed ID: 10966284 [TBL] [Abstract][Full Text] [Related]
9. Quantitative end-tidal carbon dioxide at initiation of resuscitation may help guide the ventilation of infants born at less than 30 weeks gestation. Shah D; Tracy M; Hinder M; Badawi N Acta Paediatr; 2023 Apr; 112(4):652-658. PubMed ID: 36541873 [TBL] [Abstract][Full Text] [Related]
10. Breathing measurement reduces false-negative classification of tachypneic preextubation trial failures. DeHaven CB; Kirton OC; Morgan JP; Hart AM; Shatz DV; Civetta JM Crit Care Med; 1996 Jun; 24(6):976-80. PubMed ID: 8681601 [TBL] [Abstract][Full Text] [Related]
11. Prolonged "phantom" square wave capnograph tracing after patient disconnection or extubation. Potential hazard associated with the Siemens Servo 900c ventilator. Ginosar Y; Baranov D Anesthesiology; 1997 Mar; 86(3):729-35. PubMed ID: 9066340 [TBL] [Abstract][Full Text] [Related]
12. PET(CO2) measurement and feature extraction of capnogram signals for extubation outcomes from mechanical ventilation. Rasera CC; Gewehr PM; Domingues AM Physiol Meas; 2015 Feb; 36(2):231-42. PubMed ID: 25582400 [TBL] [Abstract][Full Text] [Related]
13. Ventilation and spontaneous breathing at birth of infants with congenital diaphragmatic hernia. te Pas AB; Kamlin CO; Dawson JA; O'Donnell C; Sokol J; Stewart M; Morley CJ; Davis PG J Pediatr; 2009 Mar; 154(3):369-73. PubMed ID: 19038404 [TBL] [Abstract][Full Text] [Related]
14. Noninvasive Estimation of Arterial CO2 From End-Tidal CO2 in Mechanically Ventilated Children: The GRAeDIENT Pilot Study. Baudin F; Bourgoin P; Brossier D; Essouri S; Emeriaud G; Wysocki M; Jouvet P Pediatr Crit Care Med; 2016 Dec; 17(12):1117-1123. PubMed ID: 27632057 [TBL] [Abstract][Full Text] [Related]
15. Intratracheal pulmonary ventilation versus conventional mechanical ventilation in a rabbit model of surfactant deficiency. Makhoul IR; Kugelman A; Garg M; Berkeland JE; Lew CD; Bui KC Pediatr Res; 1995 Dec; 38(6):878-85. PubMed ID: 8618788 [TBL] [Abstract][Full Text] [Related]
16. A crossover analysis of mandatory minute ventilation compared to synchronized intermittent mandatory ventilation in neonates. Guthrie SO; Lynn C; Lafleur BJ; Donn SM; Walsh WF J Perinatol; 2005 Oct; 25(10):643-6. PubMed ID: 16079905 [TBL] [Abstract][Full Text] [Related]
17. Effect of spontaneous and mechanical breathing on dynamic lung mechanics in hyaline membrane disease. Mammel MC; Fisher JB; Bing DR; Gatto CW; Boros SJ Pediatr Pulmonol; 1990; 8(4):222-5. PubMed ID: 2371070 [TBL] [Abstract][Full Text] [Related]
18. Comparison of intratracheal pulmonary ventilation and hybrid intratracheal pulmonary ventilation with conventional mechanical ventilation in a rabbit model of acute respiratory distress syndrome by saline lavage. Perez CA; Bui KC; Bustorff-Silva J; Atkinson JB Crit Care Med; 2000 Mar; 28(3):774-81. PubMed ID: 10752829 [TBL] [Abstract][Full Text] [Related]
19. Differences in end-tidal carbon dioxide and breathing patterns in ventilator-dependent patients using pressure support ventilation. Pierce JD; Gerald K Am J Crit Care; 1994 Jul; 3(4):276-81. PubMed ID: 7920956 [TBL] [Abstract][Full Text] [Related]
20. Use of capnography for assessment of the adequacy of alveolar ventilation during weaning from mechanical ventilation. Morley TF; Giaimo J; Maroszan E; Bermingham J; Gordon R; Griesback R; Zappasodi SJ; Giudice JC Am Rev Respir Dis; 1993 Aug; 148(2):339-44. PubMed ID: 8342896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]