These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 11747300)
1. Substrate specificity and kinetic mechanism of Escherichia coli ribulokinase. Lee LV; Gerratana B; Cleland WW Arch Biochem Biophys; 2001 Dec; 396(2):219-24. PubMed ID: 11747300 [TBL] [Abstract][Full Text] [Related]
2. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of pentitol metabolism in mammalian tissues provides new insight into disorders of human sugar metabolism. Huck JH; Roos B; Jakobs C; van der Knaap MS; Verhoeven NM Mol Genet Metab; 2004 Jul; 82(3):231-7. PubMed ID: 15234337 [TBL] [Abstract][Full Text] [Related]
4. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. 3. PHYSICAL AND IMMUNOLOGICAL PROPERTIES OF PENITOL DEHYDROGENASES AND PENTULOKINASES. MORTLOCK RP; FOSSITT DD; PETERING DH; WOOD WA J Bacteriol; 1965 Jan; 89(1):129-35. PubMed ID: 14255652 [TBL] [Abstract][Full Text] [Related]
5. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. II. MECHANISM OF ACQUISITION OF KINASE, ISOMERASE, AND DEHYDROGENASE ACTIVITY. MORTLOCK RP; WOOD WA J Bacteriol; 1964 Oct; 88(4):845-9. PubMed ID: 14219045 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the kinetic mechanism of Escherichia coli uridine diphosphate-N-acetylmuramate:L-alanine ligase. Emanuele JJ; Jin H; Yanchunas J; Villafranca JJ Biochemistry; 1997 Jun; 36(23):7264-71. PubMed ID: 9188728 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic studies with 2-C-methyl-D-erythritol 4-phosphate synthase from Escherichia coli. Fox DT; Poulter CD Biochemistry; 2005 Jun; 44(23):8360-8. PubMed ID: 15938625 [TBL] [Abstract][Full Text] [Related]
9. A mannoglucokinese of Mycobacterium tuberculosis H37Ra. Kowalska H; Pastuszak I; Szymona M Acta Microbiol Pol; 1980; 29(3):249-57. PubMed ID: 19852110 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member. Parducci RE; Cabrera R; Baez M; Guixé V Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375 [TBL] [Abstract][Full Text] [Related]
11. Structural insight into mechanism and diverse substrate selection strategy of L-ribulokinase. Agarwal R; Burley SK; Swaminathan S Proteins; 2012 Jan; 80(1):261-8. PubMed ID: 22072612 [TBL] [Abstract][Full Text] [Related]
12. Substrate specificity of a recombinant D-lyxose isomerase from Providencia stuartii for monosaccharides. Kwon HJ; Yeom SJ; Park CS; Oh DK J Biosci Bioeng; 2010 Jul; 110(1):26-31. PubMed ID: 20541111 [TBL] [Abstract][Full Text] [Related]
14. Kinetic mechanism of the tRNA-modifying enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA). Van Lanen SG; Iwata-Reuyl D Biochemistry; 2003 May; 42(18):5312-20. PubMed ID: 12731872 [TBL] [Abstract][Full Text] [Related]
15. Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. Di Luccio E; Petschacher B; Voegtli J; Chou HT; Stahlberg H; Nidetzky B; Wilson DK J Mol Biol; 2007 Jan; 365(3):783-98. PubMed ID: 17123542 [TBL] [Abstract][Full Text] [Related]
16. Transaldolase/glucose-6-phosphate isomerase bifunctional enzyme and ribulokinase as factors to increase xylitol production from D-arabitol in Gluconobacter oxydans. Sugiyama M; Suzuki S; Tonouchi N; Yokozeki K Biosci Biotechnol Biochem; 2003 Dec; 67(12):2524-32. PubMed ID: 14730129 [TBL] [Abstract][Full Text] [Related]
17. Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of L-ribulose. De Muynck C; Pereira C; Soetaert W; Vandamme E J Biotechnol; 2006 Sep; 125(3):408-15. PubMed ID: 16650498 [TBL] [Abstract][Full Text] [Related]
18. The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana). Brown AE; Grossman SH Arch Insect Biochem Physiol; 2004 Dec; 57(4):166-77. PubMed ID: 15540275 [TBL] [Abstract][Full Text] [Related]
19. Acquisition of ability to utilize Xylitol: disadvantages of a constitutive catabolic pathway in Escherichia coli. Scangos GA; Reiner AM J Bacteriol; 1978 May; 134(2):501-5. PubMed ID: 207668 [TBL] [Abstract][Full Text] [Related]
20. Pentitol metabolism of Rhodobacter sphaeroides Si4: purification and characterization of a ribitol dehydrogenase. Kahle C; Schneider KH; Giffhorn F J Gen Microbiol; 1992 Jun; 138(6):1277-81. PubMed ID: 1527498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]