BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11747441)

  • 1. Copper trafficking: the solution structure of Bacillus subtilis CopZ.
    Banci L; Bertini I; Del Conte R; Markey J; Ruiz-Dueñas FJ
    Biochemistry; 2001 Dec; 40(51):15660-8. PubMed ID: 11747441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR structure and metal interactions of the CopZ copper chaperone.
    Wimmer R; Herrmann T; Solioz M; Wüthrich K
    J Biol Chem; 1999 Aug; 274(32):22597-603. PubMed ID: 10428839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper.
    Banci L; Bertini I; Del Conte R
    Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray absorption and NMR spectroscopic studies of CopZ, a copper chaperone in Bacillus subtilis: the coordination properties of the copper ion.
    Banci L; Bertini I; Del Conte R; Mangani S; Meyer-Klaucke W
    Biochemistry; 2003 Mar; 42(8):2467-74. PubMed ID: 12600214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1.
    Arnesano F; Banci L; Bertini I; Huffman DL; O'Halloran TV
    Biochemistry; 2001 Feb; 40(6):1528-39. PubMed ID: 11327811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis.
    Kihlken MA; Leech AP; Le Brun NE
    Biochem J; 2002 Dec; 368(Pt 3):729-39. PubMed ID: 12238948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis.
    Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L
    Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA.
    Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM
    Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the apo and copper(I)-loaded human metallochaperone HAH1.
    Anastassopoulou I; Banci L; Bertini I; Cantini F; Katsari E; Rosato A
    Biochemistry; 2004 Oct; 43(41):13046-53. PubMed ID: 15476398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insight into the distinct properties of copper transport by the Helicobacter pylori CopP protein.
    Park SJ; Jung YS; Kim JS; Seo MD; Lee BJ
    Proteins; 2008 May; 71(2):1007-19. PubMed ID: 18214986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones.
    Hussain F; Wittung-Stafshede P
    Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase.
    Arnesano F; Banci L; Bertini I; Cantini F; Ciofi-Baffoni S; Huffman DL; O'Halloran TV
    J Biol Chem; 2001 Nov; 276(44):41365-76. PubMed ID: 11500502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the metal-binding selectivity of the metallochaperone CopZ from Enterococcus hirae by electrospray ionization mass spectrometry.
    Urvoas A; Amekraz B; Moulin C; Le Clainche L; Stöcklin R; Moutiez M
    Rapid Commun Mass Spectrom; 2003; 17(16):1889-96. PubMed ID: 12876690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance.
    Solovieva IM; Entian KD
    FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of B. subtilis acyl carrier protein.
    Xu GY; Tam A; Lin L; Hixon J; Fritz CC; Powers R
    Structure; 2001 Apr; 9(4):277-87. PubMed ID: 11525165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-binding stoichiometry and selectivity of the copper chaperone CopZ from Enterococcus hirae.
    Urvoas A; Moutiez M; Estienne C; Couprie J; Mintz E; Le Clainche L
    Eur J Biochem; 2004 Mar; 271(5):993-1003. PubMed ID: 15009211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.