BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11747599)

  • 1. Differential transduction efficiency of SCID-repopulating cells derived from umbilical cord blood and granulocyte colony-stimulating factor-mobilized peripheral blood.
    Pollok KE; van Der Loo JC; Cooper RJ; Hartwell JR; Miles KR; Breese R; Williams EP; Montel A; Seshadri R; Hanenberg H; Williams DA
    Hum Gene Ther; 2001 Nov; 12(17):2095-108. PubMed ID: 11747599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of gene transfer into primitive human hematopoietic cells of granulocyte-colony stimulating factor-mobilized peripheral blood using low-dose cytokines and comparison of a gibbon ape leukemia virus versus an RD114-pseudotyped retroviral vector.
    van der Loo JC; Liu BL; Goldman AI; Buckley SM; Chrudimsky KS
    Hum Gene Ther; 2002 Jul; 13(11):1317-30. PubMed ID: 12162814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo effects of myeloablative alkylator therapy on survival and differentiation of MGMTP140K-transduced human G-CSF-mobilized peripheral blood cells.
    Cai S; Hartwell JR; Cooper RJ; Juliar BE; Kreklau E; Abonour R; Goebel WS; Pollok KE
    Mol Ther; 2006 May; 13(5):1016-26. PubMed ID: 16426896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transduction of long-term and mobilized peripheral blood-derived NOD/SCID repopulating cells by foamy virus vectors.
    Josephson NC; Trobridge G; Russell DW
    Hum Gene Ther; 2004 Jan; 15(1):87-92. PubMed ID: 14965380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeficient mice.
    van Hennik PB; Verstegen MM; Bierhuizen MF; Limón A; Wognum AW; Cancelas JA; Barquinero J; Ploemacher RE; Wagemaker G
    Blood; 1998 Dec; 92(11):4013-22. PubMed ID: 9834203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors.
    Guenechea G; Gan OI; Inamitsu T; Dorrell C; Pereira DS; Kelly M; Naldini L; Dick JE
    Mol Ther; 2000 Jun; 1(6):566-73. PubMed ID: 10933981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis.
    Woods NB; Muessig A; Schmidt M; Flygare J; Olsson K; Salmon P; Trono D; von Kalle C; Karlsson S
    Blood; 2003 Feb; 101(4):1284-9. PubMed ID: 12393514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors.
    Josephson NC; Vassilopoulos G; Trobridge GD; Priestley GV; Wood BL; Papayannopoulou T; Russell DW
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8295-300. PubMed ID: 12060773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similar myeloid recovery despite superior overall engraftment in NOD/SCID mice after transplantation of human CD34(+) cells from umbilical cord blood as compared to adult sources.
    Noort WA; Wilpshaar J; Hertogh CD; Rad M; Lurvink EG; van Luxemburg-Heijs SA; Zwinderman K; Verwey RA; Willemze R; Falkenburg JH
    Bone Marrow Transplant; 2001 Jul; 28(2):163-71. PubMed ID: 11509934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified retroviral vector gcsap with murine stem cell virus long terminal repeat allows high and continued expression of enhanced green fluorescent protein by human hematopoietic progenitors engrafted in nonobese diabetic/severe combined immunodeficient mice.
    Kaneko S; Onodera M; Fujiki Y; Nagasawa T; Nakauchi H
    Hum Gene Ther; 2001 Jan; 12(1):35-44. PubMed ID: 11177540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of different protocols for gene transfer into non-obese diabetes/severe combined immunodeficiency disease mouse repopulating cells.
    Ebeling P; Bach P; Sorg U; Schneider A; Trarbach T; Dilloo D; Hanenberg H; Niesert S; Seeber S; Moritz T; Flasshove M
    J Cancer Res Clin Oncol; 2007 Mar; 133(3):199-209. PubMed ID: 17053889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of retroviral-mediated gene transfer into cultured human CD34+ hematopoietic progenitor cells derived from peripheral blood, bone marrow, and fetal umbilical cord blood.
    Campain JA; Terrell KL; Tomczak JA; Shpall EJ; Hami LS; Harrison GS
    Biol Blood Marrow Transplant; 1997 Nov; 3(5):273-81. PubMed ID: 9450923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of retroviral transfer of the human multidrug resistance 1 gene to human mobilized peripheral blood progenitor cells engrafted in nonobese diabetic/severe combined immunodeficient mice.
    Schiedlmeier B; Kühlcke K; Eckert HG; Baum C; Zeller WJ; Fruehauf S
    Blood; 2000 Feb; 95(4):1237-48. PubMed ID: 10666196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained transgene expression by human cord blood derived CD34+ cells transduced with simian immunodeficiency virus agmTYO1-based vectors carrying the human coagulation factor VIII gene in NOD/SCID mice.
    Kikuchi J; Mimuro J; Ogata K; Tabata T; Ueda Y; Ishiwata A; Kimura K; Takano K; Madoiwa S; Mizukami H; Hanazono Y; Kume A; Hasegawa M; Ozawa K; Sakata Y
    J Gene Med; 2004 Oct; 6(10):1049-60. PubMed ID: 15386735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High levels of transgene expression following transduction of long-term NOD/SCID-repopulating human cells with a modified lentiviral vector.
    Gao Z; Golob J; Tanavde VM; Civin CI; Hawley RG; Cheng L
    Stem Cells; 2001; 19(3):247-59. PubMed ID: 11359950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells.
    Leurs C; Jansen M; Pollok KE; Heinkelein M; Schmidt M; Wissler M; Lindemann D; Von Kalle C; Rethwilm A; Williams DA; Hanenberg H
    Hum Gene Ther; 2003 Apr; 14(6):509-19. PubMed ID: 12718762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient gene transfer into preterm CD34 hematopoietic progenitor cells.
    Shields LE; Kiem HP; Andrews RG
    Am J Obstet Gynecol; 2000 Sep; 183(3):732-7. PubMed ID: 10992201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term engraftment of nonobese diabetic/severe combined immunodeficient mice with human CD34+ cells transduced by a self-inactivating human immunodeficiency virus type 1 vector.
    Gatlin J; Padgett A; Melkus MW; Kelly PF; Garcia JV
    Hum Gene Ther; 2001 Jun; 12(9):1079-89. PubMed ID: 11399229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oncoretroviral gene transfer to NOD/SCID repopulating cells using three different viral envelopes.
    Relander T; Karlsson S; Richter J
    J Gene Med; 2002; 4(2):122-32. PubMed ID: 11933213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene delivery using human cord blood-derived CD34+cells into inflamed glomeruli in NOD/SCID mice.
    Yokoo T; Ohashi T; Utsunomiya Y; Okamoto A; Suzuki T; Shen JS; Tanaka T; Kawamura T; Hosoya T
    Kidney Int; 2003 Jul; 64(1):102-9. PubMed ID: 12787400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.