These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 11747886)
1. 3D whole body scanning to determine mass properties of legs. Norton J; Donaldson N; Dekker L J Biomech; 2002 Jan; 35(1):81-6. PubMed ID: 11747886 [TBL] [Abstract][Full Text] [Related]
2. Determination of body segment masses and centers of mass using a force plate method in individuals of different morphology. Damavandi M; Farahpour N; Allard P Med Eng Phys; 2009 Nov; 31(9):1187-94. PubMed ID: 19683955 [TBL] [Abstract][Full Text] [Related]
3. The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. Durkin JL; Dowling JJ; Andrews DM J Biomech; 2002 Dec; 35(12):1575-80. PubMed ID: 12445610 [TBL] [Abstract][Full Text] [Related]
4. Determination of muscle mass changes in legs from 40K measurements. Palmer HE; Rieksts GA Aviat Space Environ Med; 1979 Sep; 50(9):961-3. PubMed ID: 496773 [TBL] [Abstract][Full Text] [Related]
5. Kinetic analysis of the lower limbs in baseball tee batting. Ae K; Koike S; Fujii N; Ae M; Kawamura T Sports Biomech; 2017 Sep; 16(3):283-296. PubMed ID: 28632063 [TBL] [Abstract][Full Text] [Related]
6. Concentric and eccentric isokinetic resistance training similarly increases muscular strength, fat-free soft tissue mass, and specific bone mineral measurements in young women. Nickols-Richardson SM; Miller LE; Wootten DF; Ramp WK; Herbert WG Osteoporos Int; 2007 Jun; 18(6):789-96. PubMed ID: 17264975 [TBL] [Abstract][Full Text] [Related]
7. A negative relationship between leg length and leg cross-sectional areas in adults. Burton RF; Nevill AM; Stewart AD; Daniell N; Olds T Am J Hum Biol; 2012; 24(4):562-4. PubMed ID: 22411043 [TBL] [Abstract][Full Text] [Related]
8. Relationships between legs bone mineral density, anthropometry and jumping height in prepubertal children. Jürimäe T; Hurbo T; Jürimäe J Coll Antropol; 2008 Mar; 32(1):61-6. PubMed ID: 18494189 [TBL] [Abstract][Full Text] [Related]
9. Mass, center of mass, and moment of inertia estimates for infant limb segments. Schneider K; Zernicke RF J Biomech; 1992 Feb; 25(2):145-8. PubMed ID: 1733990 [TBL] [Abstract][Full Text] [Related]
10. A comparison of three bioelectrical impedance analyses for predicting lean body mass in a population with a large difference in muscularity. Ishiguro N; Kanehisa H; Miyatani M; Masuo Y; Fukunaga T Eur J Appl Physiol; 2005 May; 94(1-2):25-35. PubMed ID: 15605280 [TBL] [Abstract][Full Text] [Related]
11. Infrared optoelectronic volumetry, the ideal way to measure limb volume. Tierney S; Aslam M; Rennie K; Grace P Eur J Vasc Endovasc Surg; 1996 Nov; 12(4):412-7. PubMed ID: 8980428 [TBL] [Abstract][Full Text] [Related]
12. The effect of pose variability and repeated reliability of segmental centres of mass acquisition when using 3D photonic scanning. Chiu CY; Pease DL; Sanders RH Ergonomics; 2016 Dec; 59(12):1673-1678. PubMed ID: 27004589 [TBL] [Abstract][Full Text] [Related]
13. Determination of subject specific whole-body centre of mass using the 3D Statically Equivalent Serial Chain. Bonnet V; González A; Azevedo-Coste C; Hayashibe M; Cotton S; Fraisse P Gait Posture; 2015 Jan; 41(1):70-5. PubMed ID: 25238952 [TBL] [Abstract][Full Text] [Related]
14. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference. Fuller NJ; Hardingham CR; Graves M; Screaton N; Dixon AK; Ward LC; Elia M Clin Sci (Lond); 1999 Jun; 96(6):647-57. PubMed ID: 10334971 [TBL] [Abstract][Full Text] [Related]
15. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running. Liew BXW; Morris S; Masters A; Netto K J Biomech; 2017 Nov; 64():253-257. PubMed ID: 29050822 [TBL] [Abstract][Full Text] [Related]
16. Necessary precautions in measuring correct vertical jumping height by means of force plate measurements. Vanrenterghem J; De Clercq D; Van Cleven P Ergonomics; 2001 Jun; 44(8):814-8. PubMed ID: 11450878 [TBL] [Abstract][Full Text] [Related]
17. Validity of block start performance without arm forces or by kinematics-only methods. Otsuka M; Potthast W; Willwacher S; Goldmann JP; Kurihara T; Isaka T Sports Biomech; 2019 Jun; 18(3):229-244. PubMed ID: 30990124 [TBL] [Abstract][Full Text] [Related]
18. The gamma mass scanning technique for inertial anthropometric measurement. Brooks CB; Jacobs AM Med Sci Sports; 1975; 7(4):290-4. PubMed ID: 1235152 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive computerized scanning method for the correlation between the facial soft and hard tissues for an integrated three-dimensional anthropometry and cephalometry. Galantucci LM; Percoco G; Lavecchia F; Di Gioia E J Craniofac Surg; 2013 May; 24(3):797-804. PubMed ID: 23714883 [TBL] [Abstract][Full Text] [Related]
20. 'Putting flesh back onto the bones?' Can we predict soft tissue properties from skeletal and fossil remains? Shaw C J Hum Evol; 2010 Nov; 59(5):484-92. PubMed ID: 20688357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]