These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11747894)

  • 21. The acetabular labrum regulates fluid circulation of the hip joint during functional activities.
    Dwyer MK; Jones HL; Hogan MG; Field RE; McCarthy JC; Noble PC
    Am J Sports Med; 2014 Apr; 42(4):812-9. PubMed ID: 24557859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of cartilage geometry on the pressure distribution in the human hip joint.
    Rushfeld PD; Mann RW; Harris WH
    Science; 1979 Apr; 204(4391):413-5. PubMed ID: 441729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis.
    Chegini S; Beck M; Ferguson SJ
    J Orthop Res; 2009 Feb; 27(2):195-201. PubMed ID: 18752280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress distribution and consolidation in cartilage constituents is influenced by cyclic loading and osteoarthritic degeneration.
    Speirs AD; Beaulé PE; Ferguson SJ; Frei H
    J Biomech; 2014 Jul; 47(10):2348-53. PubMed ID: 24856886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element prediction of cartilage contact stresses in normal human hips.
    Harris MD; Anderson AE; Henak CR; Ellis BJ; Peters CL; Weiss JA
    J Orthop Res; 2012 Jul; 30(7):1133-9. PubMed ID: 22213112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tensile properties of the human acetabular labrum-the first report.
    Ishiko T; Naito M; Moriyama S
    J Orthop Res; 2005 Nov; 23(6):1448-53. PubMed ID: 16099616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis.
    Zhao X; Chosa E; Totoribe K; Deng G
    J Orthop Sci; 2010 Sep; 15(5):632-40. PubMed ID: 20953924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hip chondrolabral mechanics during activities of daily living: Role of the labrum and interstitial fluid pressurization.
    Todd JN; Maak TG; Ateshian GA; Maas SA; Weiss JA
    J Biomech; 2018 Mar; 69():113-120. PubMed ID: 29366559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The importance of femur/acetabulum cartilage in the biomechanics of the intact hip: experimental and numerical assessment.
    Duarte RJ; Ramos A; Completo A; Relvas C; Simões JA
    Comput Methods Biomech Biomed Engin; 2015; 18(8):880-9. PubMed ID: 24261321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel modelling and simulation method of hip joint surface contact stress.
    Wang M; Wang L; Li P; Fu Y
    Bioengineered; 2017 Jan; 8(1):105-112. PubMed ID: 27696938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hip joint degeneration due to cam impingement: a finite element analysis.
    Hellwig FL; Tong J; Hussell JG
    Comput Methods Biomech Biomed Engin; 2016; 19(1):41-8. PubMed ID: 25567413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Articular cartilage friction increases in hip joints after the removal of acetabular labrum.
    Song Y; Ito H; Kourtis L; Safran MR; Carter DR; Giori NJ
    J Biomech; 2012 Feb; 45(3):524-30. PubMed ID: 22176711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres : an experimental study.
    van Arkel RJ; Amis AA; Cobb JP; Jeffers JR
    Bone Joint J; 2015 Apr; 97-B(4):484-91. PubMed ID: 25820886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture.
    Townsend KC; Thomas-Aitken HD; Rudert MJ; Kern AM; Willey MC; Anderson DD; Goetz JE
    J Biomech; 2018 Jan; 67():9-17. PubMed ID: 29221903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A stress analysis of acetabular reconstruction in protrusio acetabuli.
    Crowninshield RD; Brand RA; Pedersen DR
    J Bone Joint Surg Am; 1983 Apr; 65(4):495-9. PubMed ID: 6833325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The labro-acetabular complex.
    Field RE; Rajakulendran K
    J Bone Joint Surg Am; 2011 May; 93 Suppl 2():22-7. PubMed ID: 21543684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cartilage stresses in the human hip joint.
    Macirowski T; Tepic S; Mann RW
    J Biomech Eng; 1994 Feb; 116(1):10-8. PubMed ID: 8189704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain.
    Ghosh R; Pal B; Ghosh D; Gupta S
    Comput Methods Biomech Biomed Engin; 2015; 18(7):697-710. PubMed ID: 24156480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint.
    Eckstein F; von Eisenhart-Rothe R; Landgraf J; Adam C; Loehe F; Müller-Gerbl M; Putz R
    Acta Anat (Basel); 1997; 158(3):192-204. PubMed ID: 9394956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanics of focal chondral defects in the hip.
    Klennert BJ; Ellis BJ; Maak TG; Kapron AL; Weiss JA
    J Biomech; 2017 Feb; 52():31-37. PubMed ID: 28041611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.