BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11748044)

  • 1. Role of CO in attenuated vasoconstrictor reactivity of mesenteric resistance arteries after chronic hypoxia.
    Gonzales RJ; Walker BR
    Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H30-7. PubMed ID: 11748044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous carbon monoxide is an endothelial-derived vasodilator factor in the mesenteric circulation.
    Naik JS; O'Donaughy TL; Walker BR
    Am J Physiol Heart Circ Physiol; 2003 Mar; 284(3):H838-45. PubMed ID: 12446283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia.
    Caudill TK; Resta TC; Kanagy NL; Walker BR
    Am J Physiol; 1998 Oct; 275(4):R1025-30. PubMed ID: 9756530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of HO-1 expression with onset and reversal of hypoxia-induced vasoconstrictor hyporeactivity.
    Jernigan NL; O'Donaughy TL; Walker BR
    Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H298-307. PubMed ID: 11406497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal vasodilatory influence of endogenous carbon monoxide in chronically hypoxic rats.
    O'Donaughy TL; Walker BR
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2908-15. PubMed ID: 11087247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant and vasodilatory effects of heme oxygenase on mesenteric vasoreactivity following chronic hypoxia.
    Sweazea K; Walker BR
    Microcirculation; 2009 Feb; 16(2):131-41. PubMed ID: 19031291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender differences in mesenteric vasoconstrictor reactivity following chronic hypoxia.
    Gonzales RJ; Bryant JM; Naik JS; Resta TC; Walker BR
    Microcirculation; 2008 Aug; 15(6):473-84. PubMed ID: 19086257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction.
    Earley S; Walker BR
    Am J Physiol Heart Circ Physiol; 2003 May; 284(5):H1655-61. PubMed ID: 12511430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme oxygenase-mediated vasodilation involves vascular smooth muscle cell hyperpolarization.
    Naik JS; Walker BR
    Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H220-8. PubMed ID: 12637349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of vascular heme oxygenase in reduced myogenic reactivity following chronic hypoxia.
    Naik JS; Walker BR
    Microcirculation; 2006 Mar; 13(2):81-8. PubMed ID: 16459321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unaltered vasoconstrictor responsiveness after iNOS inhibition in lungs from chronically hypoxic rats.
    Resta TC; O'Donaughy TL; Earley S; Chicoine LG; Walker BR
    Am J Physiol; 1999 Jan; 276(1):L122-30. PubMed ID: 9887064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelium-dependent blunting of myogenic responsiveness after chronic hypoxia.
    Earley S; Walker BR
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2202-9. PubMed ID: 12388297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced NO-dependent pulmonary vasodilation limits increased vasoconstrictor sensitivity in neonatal chronic hypoxia.
    Sheak JR; Weise-Cross L; deKay RJ; Walker BR; Jernigan NL; Resta TC
    Am J Physiol Heart Circ Physiol; 2017 Oct; 313(4):H828-H838. PubMed ID: 28733445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 48-h Hypoxic exposure results in endothelium-dependent systemic vascular smooth muscle cell hyperpolarization.
    Earley S; Naik JS; Walker BR
    Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R79-85. PubMed ID: 12069933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats.
    Bolognesi M; Sacerdoti D; Piva A; Di Pascoli M; Zampieri F; Quarta S; Motterlini R; Angeli P; Merkel C; Gatta A
    J Pharmacol Exp Ther; 2007 Apr; 321(1):187-94. PubMed ID: 17229879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats.
    Mam V; Tanbe AF; Vitali SH; Arons E; Christou HA; Khalil RA
    J Pharmacol Exp Ther; 2010 Feb; 332(2):455-62. PubMed ID: 19915069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of vasoreactivity of mesenteric arteries in rats after two-week simulated weightlessness.
    Ma J; Zhang L; Yang T
    Space Med Med Eng (Beijing); 1998 Apr; 11(2):79-82. PubMed ID: 11543233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenteric vascular bed responsiveness in bile duct-ligated rats: roles of opioid and nitric oxide systems.
    Namiranian K; Samini M; Mehr SE; Gaskari SA; Rastegar H; Homayoun H; Dehpour AR
    Eur J Pharmacol; 2001 Jul; 423(2-3):185-93. PubMed ID: 11448484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide-dependent and -independent vascular hyporeactivity in mesenteric arteries of portal hypertensive rats.
    Heinemann A; Wachter CH; Holzer P; Fickert P; Stauber RE
    Br J Pharmacol; 1997 Jul; 121(5):1031-7. PubMed ID: 9222564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenase-1.
    Sammut IA; Foresti R; Clark JE; Exon DJ; Vesely MJ; Sarathchandra P; Green CJ; Motterlini R
    Br J Pharmacol; 1998 Dec; 125(7):1437-44. PubMed ID: 9884071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.