These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11748233)

  • 1. Interhelical packing in detergent micelles. Folding of a cystic fibrosis transmembrane conductance regulator construct.
    Therien AG; Deber CM
    J Biol Chem; 2002 Feb; 277(8):6067-72. PubMed ID: 11748233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins.
    Wehbi H; Gasmi-Seabrook G; Choi MY; Deber CM
    Biochim Biophys Acta; 2008 Jan; 1778(1):79-87. PubMed ID: 17949679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H; Rath A; Glibowicka M; Deber CM
    Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides.
    Mulvihill CM; Deber CM
    Biochim Biophys Acta; 2012 Jan; 1818(1):49-54. PubMed ID: 21996038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interhelical hydrogen bonds in the CFTR membrane domain.
    Therien AG; Grant FE; Deber CM
    Nat Struct Biol; 2001 Jul; 8(7):597-601. PubMed ID: 11427889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of a membrane protein unfolding platform in lipid bilayers.
    Nadeau VG; Gao A; Deber CM
    PLoS One; 2015; 10(3):e0120253. PubMed ID: 25799099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator.
    Therien AG; Glibowicka M; Deber CM
    Protein Expr Purif; 2002 Jun; 25(1):81-6. PubMed ID: 12071702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence hydropathy dominates membrane protein response to detergent solubilization.
    Nadeau VG; Rath A; Deber CM
    Biochemistry; 2012 Aug; 51(31):6228-37. PubMed ID: 22779403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6.
    Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ
    Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane domain mediated self-assembly of major coat protein subunits from Ff bacteriophage.
    Melnyk RA; Partridge AW; Deber CM
    J Mol Biol; 2002 Jan; 315(1):63-72. PubMed ID: 11771966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.
    Rath A; Glibowicka M; Nadeau VG; Chen G; Deber CM
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1760-5. PubMed ID: 19181854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destabilization of the transmembrane domain induces misfolding in a phenotypic mutant of cystic fibrosis transmembrane conductance regulator.
    Choi MY; Partridge AW; Daniels C; Du K; Lukacs GL; Deber CM
    J Biol Chem; 2005 Feb; 280(6):4968-74. PubMed ID: 15537638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detergent properties influence the stability of the glycophorin A transmembrane helix dimer in lysophosphatidylcholine micelles.
    Stangl M; Veerappan A; Kroeger A; Vogel P; Schneider D
    Biophys J; 2012 Dec; 103(12):2455-64. PubMed ID: 23260047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loop sequence dictates the secondary structure of a human membrane protein hairpin.
    Nadeau VG; Deber CM
    Biochemistry; 2013 Apr; 52(14):2419-26. PubMed ID: 23488803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polar residues in membrane domains of proteins: molecular basis for helix-helix association in a mutant CFTR transmembrane segment.
    Partridge AW; Melnyk RA; Deber CM
    Biochemistry; 2002 Mar; 41(11):3647-53. PubMed ID: 11888281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy.
    Wang G; Sparrow JT; Cushley RJ
    Biochemistry; 1997 Nov; 36(44):13657-66. PubMed ID: 9354635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA; Ko YH; Pedersen PL; Mildvan AS
    Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.