BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11748233)

  • 1. Interhelical packing in detergent micelles. Folding of a cystic fibrosis transmembrane conductance regulator construct.
    Therien AG; Deber CM
    J Biol Chem; 2002 Feb; 277(8):6067-72. PubMed ID: 11748233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins.
    Wehbi H; Gasmi-Seabrook G; Choi MY; Deber CM
    Biochim Biophys Acta; 2008 Jan; 1778(1):79-87. PubMed ID: 17949679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H; Rath A; Glibowicka M; Deber CM
    Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides.
    Mulvihill CM; Deber CM
    Biochim Biophys Acta; 2012 Jan; 1818(1):49-54. PubMed ID: 21996038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interhelical hydrogen bonds in the CFTR membrane domain.
    Therien AG; Grant FE; Deber CM
    Nat Struct Biol; 2001 Jul; 8(7):597-601. PubMed ID: 11427889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of a membrane protein unfolding platform in lipid bilayers.
    Nadeau VG; Gao A; Deber CM
    PLoS One; 2015; 10(3):e0120253. PubMed ID: 25799099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator.
    Therien AG; Glibowicka M; Deber CM
    Protein Expr Purif; 2002 Jun; 25(1):81-6. PubMed ID: 12071702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence hydropathy dominates membrane protein response to detergent solubilization.
    Nadeau VG; Rath A; Deber CM
    Biochemistry; 2012 Aug; 51(31):6228-37. PubMed ID: 22779403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6.
    Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ
    Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane domain mediated self-assembly of major coat protein subunits from Ff bacteriophage.
    Melnyk RA; Partridge AW; Deber CM
    J Mol Biol; 2002 Jan; 315(1):63-72. PubMed ID: 11771966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.
    Rath A; Glibowicka M; Nadeau VG; Chen G; Deber CM
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1760-5. PubMed ID: 19181854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destabilization of the transmembrane domain induces misfolding in a phenotypic mutant of cystic fibrosis transmembrane conductance regulator.
    Choi MY; Partridge AW; Daniels C; Du K; Lukacs GL; Deber CM
    J Biol Chem; 2005 Feb; 280(6):4968-74. PubMed ID: 15537638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detergent properties influence the stability of the glycophorin A transmembrane helix dimer in lysophosphatidylcholine micelles.
    Stangl M; Veerappan A; Kroeger A; Vogel P; Schneider D
    Biophys J; 2012 Dec; 103(12):2455-64. PubMed ID: 23260047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loop sequence dictates the secondary structure of a human membrane protein hairpin.
    Nadeau VG; Deber CM
    Biochemistry; 2013 Apr; 52(14):2419-26. PubMed ID: 23488803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polar residues in membrane domains of proteins: molecular basis for helix-helix association in a mutant CFTR transmembrane segment.
    Partridge AW; Melnyk RA; Deber CM
    Biochemistry; 2002 Mar; 41(11):3647-53. PubMed ID: 11888281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy.
    Wang G; Sparrow JT; Cushley RJ
    Biochemistry; 1997 Nov; 36(44):13657-66. PubMed ID: 9354635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA; Ko YH; Pedersen PL; Mildvan AS
    Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.