These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 11748583)

  • 61. Opioid peptide receptor stimulation reverses beta-adrenergic effects in rat heart cells.
    Xiao RP; Pepe S; Spurgeon HA; Capogrossi MC; Lakatta EG
    Am J Physiol; 1997 Feb; 272(2 Pt 2):H797-805. PubMed ID: 9124441
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium.
    Major JL; Salih M; Tuana BS
    J Mol Cell Cardiol; 2015 Jul; 84():179-90. PubMed ID: 25944088
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure.
    Port JD; Bristow MR
    J Mol Cell Cardiol; 2001 May; 33(5):887-905. PubMed ID: 11343413
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Relationship between alpha(1)-adrenergic receptor-induced contraction and extracellular signal-regulated kinase activation in the bovine inferior alveolar artery.
    Hague C; Gonzalez-Cabrera PJ; Jeffries WB; Abel PW
    J Pharmacol Exp Ther; 2002 Oct; 303(1):403-11. PubMed ID: 12235277
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Intracellular signaling pathways for norepinephrine- and endothelin-1-mediated regulation of myocardial cell apoptosis.
    Iwai-Kanai E; Hasegawa K
    Mol Cell Biochem; 2004 Apr; 259(1-2):163-8. PubMed ID: 15124920
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts.
    Gupta MK; Neelakantan TV; Sanghamitra M; Tyagi RK; Dinda A; Maulik S; Mukhopadhyay CK; Goswami SK
    Antioxid Redox Signal; 2006; 8(5-6):1081-93. PubMed ID: 16771697
    [TBL] [Abstract][Full Text] [Related]  

  • 67. β-Adrenergic Receptor-Stimulated Cardiac Myocyte Apoptosis: Role of β1 Integrins.
    Amin P; Singh M; Singh K
    J Signal Transduct; 2011; 2011():179057. PubMed ID: 21776383
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Myocyte contractile activity modulates norepinephrine cytotoxicity and survival effects of neuregulin-1beta.
    Kuramochi Y; Lim CC; Guo X; Colucci WS; Liao R; Sawyer DB
    Am J Physiol Cell Physiol; 2004 Feb; 286(2):C222-9. PubMed ID: 14522821
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Alpha1-adrenergic receptors prevent a maladaptive cardiac response to pressure overload.
    O'Connell TD; Swigart PM; Rodrigo MC; Ishizaka S; Joho S; Turnbull L; Tecott LH; Baker AJ; Foster E; Grossman W; Simpson PC
    J Clin Invest; 2006 Apr; 116(4):1005-15. PubMed ID: 16585965
    [TBL] [Abstract][Full Text] [Related]  

  • 70. beta-adrenergic mechanisms in cardiac diseases: a perspective.
    Chakraborti S; Chakraborti T; Shaw G
    Cell Signal; 2000 Aug; 12(8):499-513. PubMed ID: 11027943
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Apoptosis of cardiac myocytes in Gsalpha transgenic mice.
    Geng YJ; Ishikawa Y; Vatner DE; Wagner TE; Bishop SP; Vatner SF; Homcy CJ
    Circ Res; 1999 Jan 8-22; 84(1):34-42. PubMed ID: 9915772
    [TBL] [Abstract][Full Text] [Related]  

  • 72. α₁A-adrenergic receptors regulate cardiac hypertrophy in vivo through interleukin-6 secretion.
    Papay RS; Shi T; Piascik MT; Naga Prasad SV; Perez DM
    Mol Pharmacol; 2013 May; 83(5):939-48. PubMed ID: 23404509
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lack of evidence for regulation of cardiac P-type ATPases and MAP kinases in transgenic mice with cardiac-specific overexpression of constitutively active alpha(1B)-adrenoceptors.
    Barreto F; Rezende DC; Scaramello CB; Silva CL; Cunha VM; Caricati-Neto A; Jurkiewicz A; Noël F; Quintas LE
    Braz J Med Biol Res; 2010 May; 43(5):500-5. PubMed ID: 20414585
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes.
    Sandroni PB; Fisher-Wellman KH; Jensen BC
    J Cardiovasc Pharmacol; 2022 Sep; 80(3):364-377. PubMed ID: 35170492
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Catecholamines in cardiac hypertrophy.
    Scheuer J
    Am J Cardiol; 1999 Jun; 83(12A):70H-74H. PubMed ID: 10750591
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adenylyl cyclase increases survival in cardiomyopathy.
    Roth DM; Bayat H; Drumm JD; Gao MH; Swaney JS; Ander A; Hammond HK
    Circulation; 2002 Apr; 105(16):1989-94. PubMed ID: 11997288
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Beta-adrenoceptor signaling pathways mediate cardiac pathological remodeling.
    Fu Y; Xiao H; Zhang Y
    Front Biosci (Elite Ed); 2012 Jan; 4(5):1625-37. PubMed ID: 22201979
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Transcription of early developmental isogenes in cardiac myocyte hypertrophy.
    Simpson PC; Long CS; Waspe LE; Henrich CJ; Ordahl CP
    J Mol Cell Cardiol; 1989 Dec; 21 Suppl 5():79-89. PubMed ID: 2560798
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Adenylyl cyclase: a new target for heart failure therapeutics.
    Feldman AM
    Circulation; 2002 Apr; 105(16):1876-8. PubMed ID: 11997269
    [No Abstract]   [Full Text] [Related]  

  • 80. Sympathetic modulation of the cardiac myocyte phenotype: studies with a cell-culture model of myocardial hypertrophy.
    Long CS; Kariya K; Karns L; Simpson PC
    Basic Res Cardiol; 1992; 87 Suppl 2():19-31. PubMed ID: 1338564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.