These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11748614)

  • 1. Covariance of ion flux measurements allows new interpretation of Xenopus laevis oocyte physiology.
    Faszewski EE; Kunkel JG
    J Exp Zool; 2001 Nov; 290(6):652-61. PubMed ID: 11748614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes.
    Schreibmayer W; Lester HA; Dascal N
    Pflugers Arch; 1994 Mar; 426(5):453-8. PubMed ID: 7517034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hyperpolarization-activated chloride current in Xenopus laevis oocytes under voltage-clamp.
    Peres A; Bernardini G
    Pflugers Arch; 1983 Oct; 399(2):157-9. PubMed ID: 6316254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of ionic permeability coefficients of the plasma membrane of Xenopus laevis oocytes under voltage clamp.
    Costa PF; Emilio MG; Fernandes PL; Ferreira HG; Ferreira KG
    J Physiol; 1989 Jun; 413():199-211. PubMed ID: 2600847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton transport mechanism in the cell membrane of Xenopus laevis oocytes.
    Burckhardt BC; Kroll B; Frömter E
    Pflugers Arch; 1992 Jan; 420(1):78-82. PubMed ID: 1313170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unidirectional fluxes through ion channels expressed in Xenopus oocytes.
    Stampe P; Begenisich T
    Methods Enzymol; 1998; 293():556-64. PubMed ID: 9711628
    [No Abstract]   [Full Text] [Related]  

  • 7. The transoocyte voltage clamp: a non-invasive technique for electrophysiological experiments with Xenopus laevis oocytes.
    Cucu D; Simaels J; Jans D; Van Driessche W
    Pflugers Arch; 2004 Mar; 447(6):934-42. PubMed ID: 14716490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel crystallization method for visualizing the membrane localization of potassium channels.
    Lopatin AN; Makhina EN; Nichols CG
    Biophys J; 1998 May; 74(5):2159-70. PubMed ID: 9591643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xwnt-2 (Xwnt-2b) is maternally expressed in Xenopus oocytes and embryos.
    Landesman Y; Goodenough DA; Paul DL
    Biochim Biophys Acta; 2002 Jul; 1576(3):265-8. PubMed ID: 12084573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels.
    Methfessel C; Witzemann V; Takahashi T; Mishina M; Numa S; Sakmann B
    Pflugers Arch; 1986 Dec; 407(6):577-88. PubMed ID: 2432468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes.
    Musa-Aziz R; Boron WF; Parker MD
    Methods; 2010 May; 51(1):134-45. PubMed ID: 20051266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements.
    Cohen A; Zilberberg N
    J Neurosci Methods; 2006 May; 153(1):62-70. PubMed ID: 16293314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels.
    Cens T; Charnet P
    Methods Mol Biol; 2007; 403():287-302. PubMed ID: 18828001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical currents through full-grown and maturing Xenopus oocytes.
    Robinson KR
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):837-41. PubMed ID: 284407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for coupling between Na+ pump activity and TEA-sensitive K+ currents in Xenopus laevis oocytes.
    Huang H; St-Jean H; Coady MJ; Lapointe JY
    J Membr Biol; 1995 Jan; 143(1):29-35. PubMed ID: 7714886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of stage II-III Xenopus oocytes to study voltage-dependent ion channels.
    Krafte DS; Lester HA
    Methods Enzymol; 1992; 207():339-45. PubMed ID: 1382189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time, voltage and ionic concentration dependence of rectification of h-erg expressed in Xenopus oocytes.
    Wang S; Morales MJ; Liu S; Strauss HC; Rasmusson RL
    FEBS Lett; 1996 Jul; 389(2):167-73. PubMed ID: 8766823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-operated channels induced by foreign messenger RNA in Xenopus oocytes.
    Gundersen CB; Miledi R; Parker I
    Proc R Soc Lond B Biol Sci; 1983 Nov; 220(1218):131-40. PubMed ID: 6140681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular HCO(3)(-) dependence of electrogenic Na/HCO(3) cotransporters cloned from salamander and rat kidney.
    Grichtchenko II; Romero MF; Boron WF
    J Gen Physiol; 2000 May; 115(5):533-46. PubMed ID: 10779312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique.
    Tammaro P; Shimomura K; Proks P
    Methods Mol Biol; 2008; 491():127-39. PubMed ID: 18998089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.