These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 11748959)
21. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Song YL; Hsieh YT Dev Comp Immunol; 1994; 18(3):201-9. PubMed ID: 8001699 [TBL] [Abstract][Full Text] [Related]
22. Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Citelli M; Lara FA; da Silva Vaz I; Oliveira PL Mol Biochem Parasitol; 2007 Jan; 151(1):81-8. PubMed ID: 17123644 [TBL] [Abstract][Full Text] [Related]
23. Glioma cell antioxidant capacity relative to reactive oxygen species produced by dopamine. Mazzio EA; Soliman KF J Appl Toxicol; 2004; 24(2):99-106. PubMed ID: 15052604 [TBL] [Abstract][Full Text] [Related]
24. In vitro activities in mussel hemocytes as biomarkers of environmental quality: a case study in the Abra Estuary (Biscay Bay). Cajaraville MP; Olabarrieta I; Marigomez I Ecotoxicol Environ Saf; 1996 Dec; 35(3):253-60. PubMed ID: 9007002 [TBL] [Abstract][Full Text] [Related]
25. Zymosan induces production of superoxide anions by hemocytes of the solitary ascidian Halocynthia roretzi. Azumi K; Kuribayashi F; Kanegasaki S; Yokosawa H Comp Biochem Physiol C Toxicol Pharmacol; 2002 Dec; 133(4):567-74. PubMed ID: 12458184 [TBL] [Abstract][Full Text] [Related]
26. Application of the nitroblue tetrazolium-reduction method for studies on the production of reactive oxygen species in insect haemocytes. Glupov VV; Khvoshevskaya MF; Lozinskaya YL; Dubovski IM; Martemyanov VV; Sokolova JY Cytobios; 2001; 106 Suppl 2():165-78. PubMed ID: 11545444 [TBL] [Abstract][Full Text] [Related]
27. Analysis and assessment of the capacity of neutrophils to produce reactive oxygen species in a 96-well microplate format using lucigenin- and luminol-dependent chemiluminescence. Hasegawa H; Suzuki K; Nakaji S; Sugawara K J Immunol Methods; 1997 Dec; 210(1):1-10. PubMed ID: 9502580 [TBL] [Abstract][Full Text] [Related]
28. Bovine monocyte-derived macrophage function in induced copper deficiency. Cerone S; Sansinanea A; Streitenberger S; García C; Auza N Gen Physiol Biophys; 2000 Mar; 19(1):49-58. PubMed ID: 10930138 [TBL] [Abstract][Full Text] [Related]
29. Honey modulates oxidative burst of professional phagocytes. Mesaik MA; Azim MK; Mohiuddin S Phytother Res; 2008 Oct; 22(10):1404-8. PubMed ID: 18698562 [TBL] [Abstract][Full Text] [Related]
30. Glycated high-density lipoprotein regulates reactive oxygen species and reactive nitrogen species in endothelial cells. Matsunaga T; Nakajima T; Miyazaki T; Koyama I; Hokari S; Inoue I; Kawai S; Shimomura H; Katayama S; Hara A; Komoda T Metabolism; 2003 Jan; 52(1):42-9. PubMed ID: 12524661 [TBL] [Abstract][Full Text] [Related]
31. Proapoptotic and redox state-related signaling of reactive oxygen species generated by transformed fibroblasts. Schimmel M; Bauer G Oncogene; 2002 Aug; 21(38):5886-96. PubMed ID: 12185588 [TBL] [Abstract][Full Text] [Related]
32. The effects of reactive oxygen species on amphibian aging. Kashiwagi K; Shinkai T; Kajii E; Kashiwagi A Comp Biochem Physiol C Toxicol Pharmacol; 2005 Feb; 140(2):197-205. PubMed ID: 15907765 [TBL] [Abstract][Full Text] [Related]
33. Increased stress-induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts. Chwa M; Atilano SR; Reddy V; Jordan N; Kim DW; Kenney MC Invest Ophthalmol Vis Sci; 2006 May; 47(5):1902-10. PubMed ID: 16638997 [TBL] [Abstract][Full Text] [Related]
34. Involvement of hydrogen peroxide in histamine-induced modulation of WM35 human malignant melanoma cell proliferation. Medina VA; Massari NA; Cricco GP; Martín GA; Bergoc RM; Rivera ES Free Radic Biol Med; 2009 Jun; 46(11):1510-5. PubMed ID: 19285550 [TBL] [Abstract][Full Text] [Related]
35. Improved preparation of leukocytes for chemiluminescent study of human phagocytic leukocyte-generated reactive oxygen species. Saniabadi AR; Nakano M J Biolumin Chemilumin; 1993; 8(4):207-13. PubMed ID: 8396845 [TBL] [Abstract][Full Text] [Related]
36. [Reactive oxygen and nitrogen species in inflammatory process]. Rutkowski R; Pancewicz SA; Rutkowski K; Rutkowska J Pol Merkur Lekarski; 2007 Aug; 23(134):131-6. PubMed ID: 18044345 [TBL] [Abstract][Full Text] [Related]
37. Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS. Derave W; Straumann N; Olek RA; Hespel P Am J Physiol Endocrinol Metab; 2006 Dec; 291(6):E1250-7. PubMed ID: 16849631 [TBL] [Abstract][Full Text] [Related]
38. A comparative study of reactive oxygen species in red muscle: pressure effects. Amérand A; Vettier A; Sébert P; Moisan C Undersea Hyperb Med; 2006; 33(3):161-7. PubMed ID: 16869529 [TBL] [Abstract][Full Text] [Related]
39. [Effect of tea polyphenols on oxidative metabolism of polymorphonuclear neutrophils in healthy and obese people]. Zielińska-Przyjemska M; Dobrowolska-Zachwieja A Pol Merkur Lekarski; 2005 Jul; 19(109):41-7. PubMed ID: 16194025 [TBL] [Abstract][Full Text] [Related]
40. Modulation of intracellular reactive oxygen species level in chondrocytes by IGF-1, FGF, and TGF-beta1. Jallali N; Ridha H; Thrasivoulou C; Butler P; Cowen T Connect Tissue Res; 2007; 48(3):149-58. PubMed ID: 17522998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]