These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 11748959)
61. Kinetics of hydrogen peroxide production during in vitro respiratory burst of seabream (Sparus aurata L.) head-kidney leucocytes, as measured by a flow cytometric method. Ortuño J; Esteban MA; Meseguer J Fish Shellfish Immunol; 2000 Nov; 10(8):725-9. PubMed ID: 11185756 [No Abstract] [Full Text] [Related]
62. Modulation of the chemiluminescence response of Mediterranean mussel (Mytilus galloprovincialis) haemocytes. Ordás MC; Novoa B; Figueras A Fish Shellfish Immunol; 2000 Oct; 10(7):611-22. PubMed ID: 11081438 [TBL] [Abstract][Full Text] [Related]
63. Superoxide dismutase expression and H2O2 production by hemocytes of the trematode intermediate host Lymnaea stagnalis (Gastropoda). Zelck UE; Janje B; Schneider O Dev Comp Immunol; 2005; 29(4):305-14. PubMed ID: 15859235 [TBL] [Abstract][Full Text] [Related]
64. Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Szuster-Ciesielska A; Hryciuk-Umer E; Stepulak A; Kupisz K; Kandefer-Szerszeń M Acta Oncol; 2004; 43(3):252-8. PubMed ID: 15244248 [TBL] [Abstract][Full Text] [Related]
65. Production of nitric oxide by mussel (Mytilus galloprovincialis) hemocytes and effect of exogenous nitric oxide on phagocytic functions. Tafalla C; Novoa B; Figueras A Comp Biochem Physiol B Biochem Mol Biol; 2002 Jun; 132(2):423-31. PubMed ID: 12031469 [TBL] [Abstract][Full Text] [Related]
66. Modulation of Crassostrea virginica hemocyte reactive oxygen species production by Listonella anguillarum. Bramble L; Anderson RS Dev Comp Immunol; 1997; 21(4):337-48. PubMed ID: 9303272 [TBL] [Abstract][Full Text] [Related]
67. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes. Park Y; Stanley DW; Kim Y J Insect Physiol; 2015 Aug; 79():63-72. PubMed ID: 26071791 [TBL] [Abstract][Full Text] [Related]
68. NADPH-oxidase activity: the probable source of reactive oxygen intermediate generation in hemocytes of the gastropod Lymnaea stagnalis. Adema CM; van Deutekom-Mulder EC; van der Knaap WP; Sminia T J Leukoc Biol; 1993 Nov; 54(5):379-83. PubMed ID: 8228616 [TBL] [Abstract][Full Text] [Related]
69. Characterization of subpopulations and immune-related parameters of hemocytes in the green-lipped mussel Perna viridis. Wang Y; Hu M; Chiang MW; Shin PK; Cheung SG Fish Shellfish Immunol; 2012 Mar; 32(3):381-90. PubMed ID: 21982876 [TBL] [Abstract][Full Text] [Related]
70. The phagocytic system in host defense. Quie PG Scand J Infect Dis Suppl; 1980; Suppl 24():30-2. PubMed ID: 6259718 [TBL] [Abstract][Full Text] [Related]
71. Post-implantation mouse embryos have the capability to generate and release reactive oxygen species. Gagioti S; Colepicolo P; Bevilacqua E Reprod Fertil Dev; 1995; 7(5):1111-6. PubMed ID: 8848578 [TBL] [Abstract][Full Text] [Related]
72. The production of toxic oxygen metabolites by hemocytes of different snail species. Dikkeboom R; van der Knaap WP; van den Bovenkamp W; Tijnagel JM; Bayne CJ Dev Comp Immunol; 1988; 12(3):509-20. PubMed ID: 3169350 [TBL] [Abstract][Full Text] [Related]
73. A comparison of the chemiluminescent response of Crassostrea virginica and Morone saxatilis phagocytes to zymosan and viable Listonella anguillarum. Bramble LH; Anderson RS Dev Comp Immunol; 1998; 22(1):55-61. PubMed ID: 9617583 [TBL] [Abstract][Full Text] [Related]
74. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Bell KL; Smith VJ Dev Comp Immunol; 1993; 17(3):211-9. PubMed ID: 8392007 [TBL] [Abstract][Full Text] [Related]
75. Acidification of the phagosome in Crassostrea virginica hemocytes following engulfment of zymosan. Beaven AE; Paynter KT Biol Bull; 1999 Feb; 196(1):26-33. PubMed ID: 10065529 [TBL] [Abstract][Full Text] [Related]
76. Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae). Inoue N; Hanada K; Tsuji N; Igarashi I; Nagasawa H; Mikami T; Fujisaki K J Med Entomol; 2001 Jul; 38(4):514-9. PubMed ID: 11476331 [TBL] [Abstract][Full Text] [Related]
77. Silkworm (Bombyx mori) hemocytes do not produce reactive oxygen metabolites as a part of defense mechanisms. Hyrsl P; Cíz M; Kubala L; Lojek A Folia Microbiol (Praha); 2004; 49(3):315-9. PubMed ID: 15259774 [TBL] [Abstract][Full Text] [Related]
78. Inorganic polyphosphates regulate hexokinase activity and reactive oxygen species generation in mitochondria of Rhipicephalus (Boophilus) microplus embryo. Fraga A; Moraes J; da Silva JR; Costa EP; Menezes J; da Silva Vaz I; Logullo C; da Fonseca RN; Campos E Int J Biol Sci; 2013; 9(8):842-52. PubMed ID: 23983617 [TBL] [Abstract][Full Text] [Related]
79. Invertebrate cytokines II: release of interleukin-1-like molecules from tunicate hemocytes stimulated with zymosan. Raftos DA; Cooper EL; Stillman DL; Habicht GS; Beck G Lymphokine Cytokine Res; 1992 Aug; 11(4):235-40. PubMed ID: 1330002 [TBL] [Abstract][Full Text] [Related]
80. Hemocytes of the palaemonids Macrobrachium rosenbergii and M. acanthurus, and of the penaeid Penaeus paulensis. Gargioni R; Barracco MA J Morphol; 1998 Jun; 236(3):209-21. PubMed ID: 9606943 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]