BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 11749174)

  • 1. Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane.
    Ichi T; Watanabe J; Ooya T; Yui N
    Biomacromolecules; 2001; 2(1):204-10. PubMed ID: 11749174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release.
    Wang J; Williamson GS; Yang H
    Colloids Surf B Biointerfaces; 2018 May; 165():144-149. PubMed ID: 29476924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation.
    Shih H; Lin CC
    Biomacromolecules; 2015 Jul; 16(7):1915-23. PubMed ID: 25996903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive hydrogels with enhanced initial and sustained cell interactions.
    Browning MB; Russell B; Rivera J; Höök M; Cosgriff-Hernandez EM
    Biomacromolecules; 2013 Jul; 14(7):2225-33. PubMed ID: 23758437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imine Hydrogels with Tunable Degradability for Tissue Engineering.
    Boehnke N; Cam C; Bat E; Segura T; Maynard HD
    Biomacromolecules; 2015 Jul; 16(7):2101-8. PubMed ID: 26061010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically Reinforced Gelatin Hydrogels by Introducing Slidable Supramolecular Cross-Linkers.
    Lee DH; Tamura A; Arisaka Y; Seo JH; Yui N
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31683825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, Properties and Adsorption Kinetic Study of New Cross-Linked Composite Materials Based on Polyethylene Glycol Polyrotaxane and Polyisoprene/Semi-Rotaxane.
    Resmerita AM; Bargan A; Cojocaru C; Farcas A
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions.
    Dimmitt NH; Lin CC
    Macromolecules; 2024 Feb; 57(4):1556-1568. PubMed ID: 38435678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Cyclodextrins Polyrotaxane Loading Silver Sulfadiazine.
    Liu S; Zhong C; Wang W; Jia Y; Wang L; Ren L
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network.
    Bin Imran A; Esaki K; Gotoh H; Seki T; Ito K; Sakai Y; Takeoka Y
    Nat Commun; 2014 Oct; 5():5124. PubMed ID: 25296246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-Responsive Trehalose Hydrogel for Insulin Stabilization and Delivery.
    Lee J; Ko JH; Mansfield KM; Nauka PC; Bat E; Maynard HD
    Macromol Biosci; 2018 May; 18(5):e1700372. PubMed ID: 29665232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Cross-Linked Poly(ethylene glycol)-Based Hydrogels for Protein Crystallization.
    Gavira JA; Cera-Manjarres A; Ortiz K; Mendez J; Jimenez-Torres JA; Patiño-Lopez LD; Torres-Lugo M
    Cryst Growth Des; 2014 Jul; 14(7):3239-3248. PubMed ID: 25383049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Preparation of Tough, Puncture-Resistant Antibacterial Polyrotaxane Hydrogel.
    Zheng L; Jiang K; Tian D; Wu W; Xie M; He H; Sun R
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38950151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular Compartmentalized Hydrogels via Polydopamine Particle-Stabilized Water-in-Water Emulsions.
    Zhang J; Kumru B; Schmidt BVKJ
    Langmuir; 2019 Aug; 35(34):11141-11149. PubMed ID: 31373496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular polymer-based transformable material for reversible PEGylation of protein drugs.
    Utatsu K; Kogo T; Taharabaru T; Onodera R; Motoyama K; Higashi T
    Mater Today Bio; 2021 Sep; 12():100160. PubMed ID: 34841242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Application of Polyrotaxane Cross-Linking Agent Based on Cyclodextrin in Gel Materials Field.
    Liu S; Zheng J; Wang J; Liu S; Zhang X; Bao D; Zhang P
    Gels; 2023 Oct; 9(11):. PubMed ID: 37998944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effects of A-B-C-type amphiphilic copolymer on reversal of drug resistance in MCF-7/ADR breast carcinoma.
    Zhang L; Lu J; Qiu L
    Int J Nanomedicine; 2016; 11():5205-5220. PubMed ID: 27785023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient pDNA Delivery Using Cationic 2-Hydroxypropyl-β-Cyclodextrin Pluronic-Based Polyrotaxanes.
    Badwaik V; Mondjinou Y; Kulkarni A; Liu L; Demoret A; Thompson DH
    Macromol Biosci; 2016 Jan; 16(1):63-73. PubMed ID: 26257319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic α-cyclodextrin:poly(ethylene glycol) polyrotaxanes for siRNA delivery.
    Kulkarni A; DeFrees K; Schuldt RA; Hyun SH; Wright KJ; Yerneni CK; VerHeul R; Thompson DH
    Mol Pharm; 2013 Apr; 10(4):1299-305. PubMed ID: 23398604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-armed cationic cyclodextrin:poly(ethylene glycol) polyrotaxanes as efficient gene silencing vectors.
    Kulkarni A; DeFrees K; Schuldt RA; Vlahu A; VerHeul R; Hyun SH; Deng W; Thompson DH
    Integr Biol (Camb); 2013 Jan; 5(1):115-21. PubMed ID: 23042106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.