BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11749193)

  • 1. Nanostructured materials designed for cell binding and transduction.
    Liu J; Zhang Q; Remsen EE; Wooley KL
    Biomacromolecules; 2001; 2(2):362-8. PubMed ID: 11749193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide-derivatized shell-cross-linked nanoparticles. 1. Synthesis and characterization.
    Becker ML; Remsen EE; Pan D; Wooley KL
    Bioconjug Chem; 2004; 15(4):699-709. PubMed ID: 15264856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake.
    Zhang K; Fang H; Chen Z; Taylor JS; Wooley KL
    Bioconjug Chem; 2008 Sep; 19(9):1880-7. PubMed ID: 18690739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-derivatized shell-cross-linked nanoparticles. 2. Biocompatibility evaluation.
    Becker ML; Bailey LO; Wooley KL
    Bioconjug Chem; 2004; 15(4):710-7. PubMed ID: 15264857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells.
    Park J; Ryu J; Kim KA; Lee HJ; Bahn JH; Han K; Choi EY; Lee KS; Kwon HY; Choi SY
    J Gen Virol; 2002 May; 83(Pt 5):1173-1181. PubMed ID: 11961273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transduced protein transduction domain linked HSP27 protected LECs against UVB radiation-induced damage.
    Liu L; Yu R; Shi Y; Dai Y; Zeng Z; Guo X; Ji Q; Wang G; Zhong J
    Exp Eye Res; 2014 Mar; 120():36-42. PubMed ID: 24444493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.
    Ziegler A; Nervi P; Dürrenberger M; Seelig J
    Biochemistry; 2005 Jan; 44(1):138-48. PubMed ID: 15628854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of TAT/PTD-fused proteins/peptides to islets via pancreatic duct.
    Klein D; Mendoza V; Pileggi A; Molano RD; Barbé-Tuana FM; Inverardi L; Ricordi C; Pastori RL
    Cell Transplant; 2005; 14(5):241-8. PubMed ID: 16052906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo.
    Ho A; Schwarze SR; Mermelstein SJ; Waksman G; Dowdy SF
    Cancer Res; 2001 Jan; 61(2):474-7. PubMed ID: 11212234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters.
    Ziegler A; Seelig J
    Biophys J; 2004 Jan; 86(1 Pt 1):254-63. PubMed ID: 14695267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes.
    Tiriveedhi V; Butko P
    Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of a beta-peptide across cell membranes.
    Umezawa N; Gelman MA; Haigis MC; Raines RT; Gellman SH
    J Am Chem Soc; 2002 Jan; 124(3):368-9. PubMed ID: 11792194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a cell permeable competitive antagonist of RhoA and CRMP4 binding, TAT-C4RIP, to promote neurite outgrowth.
    Khazaei MR; Montcalm S; Di Polo A; Fournier AE; Durocher Y; Ong Tone S
    J Mol Neurosci; 2015 Feb; 55(2):406-15. PubMed ID: 25015230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the bioavailability of biotin conjugated onto shell cross-linked (SCK) nanoparticles.
    Qi K; Ma Q; Remsen EE; Clark CG; Wooley KL
    J Am Chem Soc; 2004 Jun; 126(21):6599-607. PubMed ID: 15161288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation.
    Rossin R; Pan D; Qi K; Turner JL; Sun X; Wooley KL; Welch MJ
    J Nucl Med; 2005 Jul; 46(7):1210-8. PubMed ID: 16000291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revised role of glycosaminoglycans in TAT protein transduction domain-mediated cellular transduction.
    Gump JM; June RK; Dowdy SF
    J Biol Chem; 2010 Jan; 285(2):1500-7. PubMed ID: 19858185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and bioavailability of mannosylated shell cross-linked nanoparticles.
    Joralemon MJ; Murthy KS; Remsen EE; Becker ML; Wooley KL
    Biomacromolecules; 2004; 5(3):903-13. PubMed ID: 15132680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 TAT-mediated protein transduction and subcellular localization using novel expression vectors.
    Yang Y; Ma J; Song Z; Wu M
    FEBS Lett; 2002 Dec; 532(1-2):36-44. PubMed ID: 12459459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antigen-decorated shell cross-linked nanoparticles: synthesis, characterization, and antibody interactions.
    Joralemon MJ; Smith NL; Holowka D; Baird B; Wooley KL
    Bioconjug Chem; 2005; 16(5):1246-56. PubMed ID: 16173805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.