These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 11749537)
21. Preparation and characterization of maghemite nanoparticles from mild steel for magnetically guided drug therapy. Kumar N; Kulkarni K; Behera L; Verma V J Mater Sci Mater Med; 2017 Aug; 28(8):116. PubMed ID: 28681216 [TBL] [Abstract][Full Text] [Related]
22. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. Joo J; Yu T; Kim YW; Park HM; Wu F; Zhang JZ; Hyeon T J Am Chem Soc; 2003 May; 125(21):6553-7. PubMed ID: 12785795 [TBL] [Abstract][Full Text] [Related]
23. Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production. Berg JM; Ho S; Hwang W; Zebda R; Cummins K; Soriaga MP; Taylor R; Guo B; Sayes CM Chem Res Toxicol; 2010 Dec; 23(12):1874-82. PubMed ID: 21067130 [TBL] [Abstract][Full Text] [Related]
24. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Sun S; Zeng H; Robinson DB; Raoux S; Rice PM; Wang SX; Li G J Am Chem Soc; 2004 Jan; 126(1):273-9. PubMed ID: 14709092 [TBL] [Abstract][Full Text] [Related]
25. Anomalous dependence of particle size on supersaturation in the preparation of iron nanoparticles from iron pentacarbonyl. Huuppola M; Zhu Z; Johansson LS; Kontturi K; Laasonen K; Johans C J Colloid Interface Sci; 2012 Nov; 386(1):28-33. PubMed ID: 22921409 [TBL] [Abstract][Full Text] [Related]
26. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Prucek R; Tuček J; Kilianová M; Panáček A; Kvítek L; Filip J; Kolář M; Tománková K; Zbořil R Biomaterials; 2011 Jul; 32(21):4704-13. PubMed ID: 21507482 [TBL] [Abstract][Full Text] [Related]
27. TEM-induced structural evolution in amorphous Fe oxide nanoparticles. Latham AH; Wilson MJ; Schiffer P; Williams ME J Am Chem Soc; 2006 Oct; 128(39):12632-3. PubMed ID: 17002341 [TBL] [Abstract][Full Text] [Related]
28. Solution-phase decomposition of ferrocene into wüstite-iron oxide core-shell nanoparticles. Loedolff MJ; Fuller RO; Nealon GL; Saunders M; Spackman MA; Koutsantonis GA Dalton Trans; 2022 Jan; 51(4):1603-1611. PubMed ID: 34994360 [TBL] [Abstract][Full Text] [Related]
29. Room temperature synthesis of rod-like FeC(2)O(4)·2H(2)O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition. Zhou W; Tang K; Zeng S; Qi Y Nanotechnology; 2008 Feb; 19(6):065602. PubMed ID: 21730700 [TBL] [Abstract][Full Text] [Related]
30. Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. Jensen KM; Andersen HL; Tyrsted C; Bøjesen ED; Dippel AC; Lock N; Billinge SJ; Iversen BB; Christensen M ACS Nano; 2014 Oct; 8(10):10704-14. PubMed ID: 25256366 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles. Boguslavsky Y; Margel S J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999 [TBL] [Abstract][Full Text] [Related]
32. Experimental and first-principles characterization of functionalized magnetic nanoparticles. Antipas GS; Statharas E; Tserotas P; Papadopoulos N; Hristoforou E Chemphyschem; 2013 Jun; 14(9):1934-42. PubMed ID: 23649714 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles. Wang C; Yan J; Cui X; Wang H J Colloid Interface Sci; 2011 Feb; 354(1):94-9. PubMed ID: 21044785 [TBL] [Abstract][Full Text] [Related]
34. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Perez De Berti IO; Cagnoli MV; Pecchi G; Alessandrini JL; Stewart SJ; Bengoa JF; Marchetti SG Nanotechnology; 2013 May; 24(17):175601. PubMed ID: 23548801 [TBL] [Abstract][Full Text] [Related]
35. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition. Lu AH; Nitz JJ; Comotti M; Weidenthaler C; Schlichte K; Lehmann CW; Terasaki O; Schüth F J Am Chem Soc; 2010 Oct; 132(40):14152-62. PubMed ID: 20849104 [TBL] [Abstract][Full Text] [Related]
36. Non-monotonic size change of monodisperse Fe₃O₄ nanoparticles in the scale-up synthesis. Song NN; Yang HT; Ren X; Li ZA; Luo Y; Shen J; Dai W; Zhang XQ; Cheng ZH Nanoscale; 2013 Apr; 5(7):2804-10. PubMed ID: 23440069 [TBL] [Abstract][Full Text] [Related]
37. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Wetterskog E; Agthe M; Mayence A; Grins J; Wang D; Rana S; Ahniyaz A; Salazar-Alvarez G; Bergström L Sci Technol Adv Mater; 2014 Oct; 15(5):055010. PubMed ID: 27877722 [TBL] [Abstract][Full Text] [Related]
38. A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition. Belaïd S; Laurent S; Vermeech M; Vander Elst L; Perez-Morga D; Muller RN Nanotechnology; 2013 Feb; 24(5):055705. PubMed ID: 23306107 [TBL] [Abstract][Full Text] [Related]
40. Facile synthesis of Fe3O4 nanoparticles by reduction phase transformation from gamma-Fe2O3 nanoparticles in organic solvent. Hai HT; Kura H; Takahashi M; Ogawa T J Colloid Interface Sci; 2010 Jan; 341(1):194-9. PubMed ID: 19850300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]