These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 11749537)
61. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376 [TBL] [Abstract][Full Text] [Related]
62. Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes. Bronstein LM; Atkinson JE; Malyutin AG; Kidwai F; Stein BD; Morgan DG; Perry JM; Karty JA Langmuir; 2011 Mar; 27(6):3044-50. PubMed ID: 21294561 [TBL] [Abstract][Full Text] [Related]
63. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids. Wang B; Wang B; Wei P; Wang X; Lou W Dalton Trans; 2012 Jan; 41(3):896-9. PubMed ID: 22086086 [TBL] [Abstract][Full Text] [Related]
64. Anomalous magnetic properties of nanoparticles arising from defect structures: topotaxial oxidation of Fe(1-x)O|Fe(3-δ)O4 core|shell nanocubes to single-phase particles. Wetterskog E; Tai CW; Grins J; Bergström L; Salazar-Alvarez G ACS Nano; 2013 Aug; 7(8):7132-44. PubMed ID: 23899269 [TBL] [Abstract][Full Text] [Related]
65. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction. Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136 [TBL] [Abstract][Full Text] [Related]
66. Iron oxide shell as the oxidation-resistant layer in SmCo5 @ Fe2O3 core-shell magnetic nanoparticles. Teng X; Yang H J Nanosci Nanotechnol; 2007 Jan; 7(1):356-61. PubMed ID: 17455504 [TBL] [Abstract][Full Text] [Related]
67. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. Chun CL; Baer DR; Matson DW; Amonette JE; Penn RL Environ Sci Technol; 2010 Jul; 44(13):5079-85. PubMed ID: 20509654 [TBL] [Abstract][Full Text] [Related]
68. Development and characterization of sub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles. Ngaboni Okassa L; Marchais H; Douziech-Eyrolles L; Cohen-Jonathan S; Soucé M; Dubois P; Chourpa I Int J Pharm; 2005 Sep; 302(1-2):187-96. PubMed ID: 16099119 [TBL] [Abstract][Full Text] [Related]
69. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship. Guo Y; Gu D; Jin Z; Du PP; Si R; Tao J; Xu WQ; Huang YY; Senanayake S; Song QS; Jia CJ; Schüth F Nanoscale; 2015 Mar; 7(11):4920-8. PubMed ID: 25631762 [TBL] [Abstract][Full Text] [Related]
70. The effect of oleic acid on the synthesis of Fe(3-x)O4 nanoparticles over a wide size range. Moya C; Batlle X; Labarta A Phys Chem Chem Phys; 2015 Nov; 17(41):27373-9. PubMed ID: 26419530 [TBL] [Abstract][Full Text] [Related]
71. An organometallic approach for very small maghemite nanoparticles: synthesis, characterization, and magnetic properties. Glaria A; Kahn ML; Falqui A; Lecante P; Collière V; Respaud M; Chaudret B Chemphyschem; 2008 Oct; 9(14):2035-41. PubMed ID: 18780411 [TBL] [Abstract][Full Text] [Related]
72. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. Aksu Demirezen D; Yıldız YŞ; Yılmaz Ş; Demirezen Yılmaz D J Biosci Bioeng; 2019 Feb; 127(2):241-245. PubMed ID: 30348486 [TBL] [Abstract][Full Text] [Related]
73. Morphology, particle size distribution, aggregation, and crystal phase of nanocrystallites in the urine of healthy persons and lithogenic patients. He JY; Deng SP; Ouyang JM IEEE Trans Nanobioscience; 2010 Jun; 9(2):156-63. PubMed ID: 20423812 [TBL] [Abstract][Full Text] [Related]
74. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles. Krajewski M; Brzozka K; Lin WS; Lin HM; Tokarczyk M; Borysiuk J; Kowalski G; Wasik D Phys Chem Chem Phys; 2016 Feb; 18(5):3900-9. PubMed ID: 26766540 [TBL] [Abstract][Full Text] [Related]
75. The synthesis of a monodisperse quaternary ferrite (FeCoCrO Abdulwahab KO; Malik MA; O'Brien P; Vitorica-Yrezabal IJ; Timco GA; Tuna F; Winpenny REP Dalton Trans; 2018 Jan; 47(2):376-381. PubMed ID: 29218346 [TBL] [Abstract][Full Text] [Related]
76. A simple one-pot synthesis of single-crystalline magnetite hollow spheres from a single iron precursor. Guan N; Wang Y; Sun D; Xu J Nanotechnology; 2009 Mar; 20(10):105603. PubMed ID: 19417523 [TBL] [Abstract][Full Text] [Related]
77. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. Chang YC; Chen DH J Colloid Interface Sci; 2005 Mar; 283(2):446-51. PubMed ID: 15721917 [TBL] [Abstract][Full Text] [Related]
78. Size-dependent magnetic properties of γ-Fe Kamali S; Chen CJ; Bates B; Johnson CE; Chiang RK J Phys Condens Matter; 2020 Jan; 32(1):015302. PubMed ID: 31487694 [TBL] [Abstract][Full Text] [Related]
79. Synthesis of monodisperse biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin. Narain R; Gonzales M; Hoffman AS; Stayton PS; Krishnan KM Langmuir; 2007 May; 23(11):6299-304. PubMed ID: 17451262 [TBL] [Abstract][Full Text] [Related]
80. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution. Snovski R; Grinblat J; Margel S Langmuir; 2011 Sep; 27(17):11071-80. PubMed ID: 21806045 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]