These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11749544)

  • 1. Experimental determination of the Cr-C(2)Cl(4) bond dissociation enthalpy in Cr(CO)(5)(C(2)Cl(4)): quantifying metal-olefin bonding interactions.
    Cedeño DL; Weitz E
    J Am Chem Soc; 2001 Dec; 123(51):12857-65. PubMed ID: 11749544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-olefin bond energies in M(CO)5(C2H(4-n)Cln) M = Cr, Mo, W; n = 0-4: electron-withdrawing olefins do not increase the bond strength.
    Schlappi DN; Cedeño DL
    J Phys Chem A; 2009 Sep; 113(35):9692-9. PubMed ID: 19663405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Descriptions of Dewar-Chatt-Duncanson Bonding Model: A Case Study of Zeise and Its Family Ions.
    Yang T; Li Z; Wang XB; Hou GL
    Chemphyschem; 2023 Apr; 24(8):e202200835. PubMed ID: 36622739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal-carbon complexes. A theoretical study.
    Krapp A; Pandey KK; Frenking G
    J Am Chem Soc; 2007 Jun; 129(24):7596-610. PubMed ID: 17530845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Metal-CO Bond in O
    Qin J; Li F; Qiu R; Chen L; Luo L; Wang M; Pu Z; Shuai M
    Inorg Chem; 2022 Jan; 61(4):2066-2075. PubMed ID: 35037755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of diborane(4) by transition metal fragments and a novel metal to π Dewar-Chatt-Duncanson model of back donation.
    Hari Krishna Reddy K; Jemmis ED
    Dalton Trans; 2013 Aug; 42(29):10633-9. PubMed ID: 23770693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valence bond approach of metal-ligand bonding in the Dewar-Chatt-Duncanson model.
    Linares M; Braida B; Humbel S
    Inorg Chem; 2007 Dec; 46(26):11390-6. PubMed ID: 18044956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of bonding in N-heterocyclic carbene-rhodium complexes.
    Srebro M; Michalak A
    Inorg Chem; 2009 Jun; 48(12):5361-9. PubMed ID: 19400577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-metal complexes [(PMe(3))(2)Cl(2)M(E)] and [(PMe(3))(2)(CO)(2)M(E)] with naked group 14 atoms (E=C-Sn) as ligands; part 1: parent compounds.
    Parameswaran P; Frenking G
    Chemistry; 2009 Sep; 15(35):8807-16. PubMed ID: 19609989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os).
    Pandey KK
    Dalton Trans; 2012 Mar; 41(11):3278-86. PubMed ID: 22290219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Chemical Bonding in In Situ Cryocrystallized Organometallic Liquids.
    Sirohiwal A; Hathwar VR; Dey D; Chopra D
    Chemphyschem; 2017 Oct; 18(20):2859-2863. PubMed ID: 28766864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear M[triple bond]E-Me versus bent M-E-Me: bonding analysis in heavier metal-ylidyne complexes [(Cp)(CO)2M[triple bond]EMe] and metallo-ylidenes [(Cp)(CO)3M-EMe] (M = Cr, Mo, W; E = Si, Ge, Sn, Pb).
    Pandey KK; Lledós A
    Inorg Chem; 2009 Apr; 48(7):2748-59. PubMed ID: 19256519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical bonding in phosphane and amine complexes of main group elements and transition metals.
    Bessac F; Frenking G
    Inorg Chem; 2006 Aug; 45(17):6956-64. PubMed ID: 16903755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A challenge to chemical intuition: donor-acceptor interactions in H3B-L and H2B+-L (L=CO; EC5H5, E=N-Bi).
    Erhardt S; Frenking G
    Chemistry; 2006 Jun; 12(17):4620-9. PubMed ID: 16598798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution calorimetric and stopped-flow kinetic studies of the reaction of *Cr(CO)3C5Me5 with PhSe-SePh and PhTe-TePh. Experimental and theoretical estimates of the Se-Se, Te-Te, H-Se, and H-Te bond strengths.
    McDonough JE; Weir JJ; Carlson MJ; Hoff CD; Kryatova OP; Rybak-Akimova EV; Clough CR; Cummins CC
    Inorg Chem; 2005 May; 44(9):3127-36. PubMed ID: 15847418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Dewar-Chatt-Duncanson model for catalytic gold(I) complexes.
    Salvi N; Belpassi L; Tarantelli F
    Chemistry; 2010 Jun; 16(24):7231-40. PubMed ID: 20468042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the paucity of molecular actinide complexes with unsupported metal-metal bonds: a comparative investigation of the electronic structure and metal-metal bonding in U2X6 (X = Cl, F, OH, NH2, CH3) complexes and d-block analogues.
    Cavigliasso G; Kaltsoyannis N
    Inorg Chem; 2006 Aug; 45(17):6828-39. PubMed ID: 16903739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bonding analysis of metal-metal multiple bonds in R3M-M'R3 (M, M' = Cr, Mo, W; R = Cl, NMe2).
    Takagi N; Krapp A; Frenking G
    Inorg Chem; 2011 Feb; 50(3):819-26. PubMed ID: 21210644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Chemical Bond and s-d Hybridization in Coinage Metal(I) Cyanides.
    De Santis M; Rampino S; Storchi L; Belpassi L; Tarantelli F
    Inorg Chem; 2019 Sep; 58(17):11716-11729. PubMed ID: 31398012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variational Energy Decomposition Analysis of Charge-Transfer Interactions between Metals and Ligands in Carbonyl Complexes.
    Han J; Grofe A; Gao J
    Inorg Chem; 2021 Sep; 60(18):14060-14071. PubMed ID: 34460236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.