These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11749580)

  • 1. Automated structure elucidation of organic molecules from (13)c NMR spectra using genetic algorithms and neural networks.
    Meiler J; Will M
    J Chem Inf Comput Sci; 2001; 41(6):1535-46. PubMed ID: 11749580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra.
    Meiler J; Will M
    J Am Chem Soc; 2002 Mar; 124(9):1868-70. PubMed ID: 11866596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel methods of automated structure elucidation based on 13C NMR spectroscopy.
    Meiler J; Köck M
    Magn Reson Chem; 2004 Dec; 42(12):1042-5. PubMed ID: 15470690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Message Passing for NMR Chemical Shift Prediction.
    Kwon Y; Lee D; Choi YS; Kang M; Kang S
    J Chem Inf Model; 2020 Apr; 60(4):2024-2030. PubMed ID: 32250618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments.
    Sarotti AM
    Org Biomol Chem; 2013 Aug; 11(29):4847-59. PubMed ID: 23779148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast determination of 13C NMR chemical shifts using artificial neural networks.
    Meiler J; Meusinger R; Will M
    J Chem Inf Comput Sci; 2000; 40(5):1169-76. PubMed ID: 11045810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-standard approach for GIAO (13)C NMR calculations.
    Sarotti AM; Pellegrinet SC
    J Org Chem; 2009 Oct; 74(19):7254-60. PubMed ID: 19725561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirectly detected through-bond chemical shift correlation NMR spectroscopy in solids under fast MAS: studies of organic-inorganic hybrid materials.
    Mao K; Wiench JW; Lin VS; Pruski M
    J Magn Reson; 2009 Jan; 196(1):92-5. PubMed ID: 18955001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of organic molecules from a structure database using proton and carbon NMR analysis results.
    Dunkel R; Wu X
    J Magn Reson; 2007 Sep; 188(1):97-110. PubMed ID: 17631401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced 13C resolution in semi-selective HMbC: a band-selective, constant-time HMBC for complex organic structure elucidation by NMR.
    Claridge TD; Pérez-Victoria I
    Org Biomol Chem; 2003 Nov; 1(21):3632-4. PubMed ID: 14649890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework for automated structure elucidation from routine NMR spectra.
    Huang Z; Chen MS; Woroch CP; Markland TE; Kanan MW
    Chem Sci; 2021 Dec; 12(46):15329-15338. PubMed ID: 34976353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing unsymmetrical indirect covariance processing to define 15N- 13C connectivity networks.
    Martin GE; Irish PA; Hilton BD; Blinov KA; Williams AJ
    Magn Reson Chem; 2007 Aug; 45(8):624-7. PubMed ID: 17563910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the accuracy of density-functional theory calculation: the genetic algorithm and neural network approach.
    Li H; Shi L; Zhang M; Su Z; Wang X; Hu L; Chen G
    J Chem Phys; 2007 Apr; 126(14):144101. PubMed ID: 17444695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Carbohydrate Structure Generalization Scheme for (1)H and (13)C NMR Simulations.
    Kapaev RR; Toukach PV
    Anal Chem; 2015 Jul; 87(14):7006-10. PubMed ID: 26087011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RDC enhanced NMR spectroscopy in organic solvent media: the importance for the experimental determination of periodic hydrogen bonded secondary structures.
    Kiran MU; Sudhakar A; Klages J; Kummerlöwe G; Luy B; Jagadeesh B
    J Am Chem Soc; 2009 Nov; 131(43):15590-1. PubMed ID: 19860476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the automatic analysis of (1)H NMR spectra: Part 5. Confirmation of chemical structure with flow-NMR.
    Griffiths L
    Magn Reson Chem; 2006 Jan; 44(1):54-8. PubMed ID: 16329087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR with multiple receivers.
    Kupče E
    Top Curr Chem; 2013; 335():71-96. PubMed ID: 21837554
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Xia Y; Zhang H
    SAR QSAR Environ Res; 2019 Jul; 30(7):477-490. PubMed ID: 31155931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated structure verification based on 1H NMR prediction.
    Golotvin SS; Vodopianov E; Lefebvre BA; Williams AJ; Spitzer TD
    Magn Reson Chem; 2006 May; 44(5):524-38. PubMed ID: 16489552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward more reliable 13C and 1H chemical shift prediction: a systematic comparison of neural-network and least-squares regression based approaches.
    Smurnyy YD; Blinov KA; Churanova TS; Elyashberg ME; Williams AJ
    J Chem Inf Model; 2008 Jan; 48(1):128-34. PubMed ID: 18052244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.