BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11749656)

  • 1. Radioligand binding reveals chymase as the predominant enzyme for mediating tissue conversion of angiotensin I in the normal human heart.
    Katugampola SD; Davenport AP
    Clin Sci (Lond); 2002 Jan; 102(1):15-21. PubMed ID: 11749656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac angiotensin II formation: the angiotensin-I converting enzyme and human chymase.
    Urata H; Ganten D
    Eur Heart J; 1993 Nov; 14 Suppl I():177-82. PubMed ID: 8293772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chymase-angiotensin system in humans: biochemistry, molecular biology and potential role in cardiovascular diseases.
    Liao Y; Husain A
    Can J Cardiol; 1995 Aug; 11 Suppl F():13F-19F. PubMed ID: 7664213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple pathways of angiotensin I conversion and their functional role in the canine penile corpus cavernosum.
    Iwamoto Y; Song K; Takai S; Yamada M; Jin D; Sakaguchi M; Ueda H; Katsuoka Y; Miyazaki M
    J Pharmacol Exp Ther; 2001 Jul; 298(1):43-8. PubMed ID: 11408523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do studies with ACE N- and C-domain-selective inhibitors provide evidence for a non-ACE, non-chymase angiotensin II-forming pathway?
    Husain A; Li M; Graham RM
    Circ Res; 2003 Jul; 93(2):91-3. PubMed ID: 12881473
    [No Abstract]   [Full Text] [Related]  

  • 6. Changes of chymase, angiotensin converting enzyme and angiotensin II type 1 receptor expressions in the hamster heart during the development of heart failure.
    Chen PM; Leng XG; Fan LL; Ma J; Wang YF; Chen LY
    Chin Med J (Engl); 2005 Nov; 118(22):1886-92. PubMed ID: 16313843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of chymase-dependent angiotensin II formation in regulating blood pressure in spontaneously hypertensive rats.
    Kirimura K; Takai S; Jin D; Muramatsu M; Kishi K; Yoshikawa K; Nakabayashi M; Mino Y; Miyazaki M
    Hypertens Res; 2005 May; 28(5):457-64. PubMed ID: 16156510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin I converting enzyme and chymase in cardiovascular tissues.
    Nishimura H; Hoffmann S; Baltatu O; Sugimura K; Ganten D; Urata H
    Kidney Int Suppl; 1996 Jun; 55():S18-23. PubMed ID: 8743505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The renin-angiotensin system and vascular function. The role of angiotensin II, angiotensin-converting enzyme, and alternative conversion of angiotensin I.
    Roks A; Buikema H; Pinto YM; van Gilst WH
    Heart Vessels; 1997; Suppl 12():119-24. PubMed ID: 9476561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual pathway for angiotensin II formation in human internal mammary arteries.
    Voors AA; Pinto YM; Buikema H; Urata H; Oosterga M; Rooks G; Grandjean JG; Ganten D; van Gilst WH
    Br J Pharmacol; 1998 Nov; 125(5):1028-32. PubMed ID: 9846641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evidence for a role of vascular chymase in the production of angiotensin II in isolated human arteries.
    Richard V; Hurel-Merle S; Scalbert E; Ferry G; Lallemand F; Bessou JP; Thuillez C
    Circulation; 2001 Aug; 104(7):750-2. PubMed ID: 11502696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACE-versus chymase-dependent angiotensin II generation in human coronary arteries: a matter of efficiency?
    Tom B; Garrelds IM; Scalbert E; Stegmann AP; Boomsma F; Saxena PR; Danser AH
    Arterioscler Thromb Vasc Biol; 2003 Feb; 23(2):251-6. PubMed ID: 12588767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of angiotensin II formation in human isolated bladder by selective inhibitors of ACE and human chymase: a functional and biochemical study.
    Waldeck K; Lindberg BF; Persson K; Andersson KE
    Br J Pharmacol; 1997 Jul; 121(6):1081-6. PubMed ID: 9249242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACE-dependent and chymase-dependent angiotensin II generation in normal and glucose-stimulated human mesangial cells.
    Cristovam PC; Arnoni CP; de Andrade MC; Casarini DE; Pereira LG; Schor N; Boim MA
    Exp Biol Med (Maywood); 2008 Aug; 233(8):1035-43. PubMed ID: 18480420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Role of angiotensin II-forming enzymes, angiotensin-converting enzyme and chymase].
    Takai S; Miyazaki M
    Nihon Rinsho; 1999 May; 57(5):1078-83. PubMed ID: 10361438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells.
    Lavrentyev EN; Estes AM; Malik KU
    Circ Res; 2007 Aug; 101(5):455-64. PubMed ID: 17626897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of angiotensin-converting enzyme and chymase in dogs with chronic mitral regurgitation.
    Su X; Wei CC; Machida N; Bishop SP; Hankes GH; Dillon RA; Oparil S; Dell Italia LJ
    J Mol Cell Cardiol; 1999 May; 31(5):1033-45. PubMed ID: 10339353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase.
    MaassenVanDenBrink A; de Vries R; Saxena PR; Schalekamp MA; Danser AH
    Cardiovasc Res; 1999 Nov; 44(2):407-15. PubMed ID: 10690317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between angiotensin I and acetylcholine on rat left main bronchial rings.
    Dumitriu IL; Gurzu B; Slătineanu SM; Costuleanu M; Petrescu G
    Rev Med Chir Soc Med Nat Iasi; 2006; 110(1):186-91. PubMed ID: 19292102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin converting enzyme (ACE) and non-ACE dependent angiotensin II generation in resistance arteries from patients with heart failure and coronary heart disease.
    Petrie MC; Padmanabhan N; McDonald JE; Hillier C; Connell JM; McMurray JJ
    J Am Coll Cardiol; 2001 Mar; 37(4):1056-61. PubMed ID: 11263608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.