These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11750813)

  • 1. Different stop codon usage in two pseudohypotrich ciliates.
    Perez-Romero P; Villalobo E; Torres A
    FEMS Microbiol Lett; 2001 Dec; 205(2):259-63. PubMed ID: 11750813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single amino acid substitution alters omnipotent eRF1 of Dileptus to euplotes-type dualpotent eRF1: standard codon usage may be advantageous in raptorial ciliates.
    Li Y; Kim OT; Ito K; Saito K; Suzaki T; Harumoto T
    Protist; 2013 May; 164(3):440-9. PubMed ID: 23562232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [How translation termination factor eRF1 Euplotes does not recognise UGA stop codon].
    Lekomtsev SA; Kolosov PM; Frolova LIu; Bidou L; Rousset JP; Kiselev LL
    Mol Biol (Mosk); 2007; 41(6):1014-22. PubMed ID: 18318120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class I release factors in ciliates with variant genetic codes.
    Inagaki Y; Doolittle WF
    Nucleic Acids Res; 2001 Feb; 29(4):921-7. PubMed ID: 11160924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly divergent actins from karyorelictean, heterotrich, and litostome ciliates.
    Kim OT; Yura K; Go N; Harumoto T
    J Eukaryot Microbiol; 2004; 51(2):227-33. PubMed ID: 15134260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Newly sequenced eRF1s from ciliates: the diversity of stop codon usage and the molecular surfaces that are important for stop codon interactions.
    Kim OT; Yura K; Go N; Harumoto T
    Gene; 2005 Feb; 346():277-86. PubMed ID: 15716103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic code supports targeted insertion of two amino acids by one codon.
    Turanov AA; Lobanov AV; Fomenko DE; Morrison HG; Sogin ML; Klobutcher LA; Hatfield DL; Gladyshev VN
    Science; 2009 Jan; 323(5911):259-61. PubMed ID: 19131629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nontriplet feature of genetic code in
    Gaydukova SA; Moldovan MA; Vallesi A; Heaphy SM; Atkins JF; Gelfand MS; Baranov PV
    Proc Natl Acad Sci U S A; 2023 May; 120(22):e2221683120. PubMed ID: 37216548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the germline actin gene in hypotrichous ciliates: multiple nonscrambled IESs at extremely conserved locations in two urostylids.
    Chen T; Yi Z; Huang J; Lin X
    J Eukaryot Microbiol; 2015; 62(2):188-95. PubMed ID: 25106041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UAA and UAG may Encode Amino Acid in Cathepsin B Gene of Euplotes octocarinatus.
    Wang R; Liu J; Di Giuseppe G; Liang A
    J Eukaryot Microbiol; 2020 Jan; 67(1):144-149. PubMed ID: 31419839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes.
    Salas-Marco J; Fan-Minogue H; Kallmeyer AK; Klobutcher LA; Farabaugh PJ; Bedwell DM
    Mol Cell Biol; 2006 Jan; 26(2):438-47. PubMed ID: 16382136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential use of termination codons in ciliated protozoa.
    Harper DS; Jahn CL
    Proc Natl Acad Sci U S A; 1989 May; 86(9):3252-6. PubMed ID: 2470096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plateins: a novel family of signal peptide-containing articulins in euplotid ciliates.
    Kloetzel JA; Baroin-Tourancheau A; Miceli C; Barchetta S; Farmar J; Banerjee D; Fleury-Aubusson A
    J Eukaryot Microbiol; 2003; 50(1):19-33. PubMed ID: 12674476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macronuclear gene-sized molecules of hypotrichs.
    Hoffman DC; Anderson RC; DuBois ML; Prescott DM
    Nucleic Acids Res; 1995 Apr; 23(8):1279-83. PubMed ID: 7753617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ciliates use both variant and universal genetic codes: evidence of omnipotent eRF1s in the class Litostomatea.
    Kim OT; Sakurai A; Saito K; Ito K; Ikehara K; Harumoto T
    Gene; 2008 Jul; 417(1-2):51-8. PubMed ID: 18495382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis of nuclear genetic code change in ciliates.
    Lozupone CA; Knight RD; Landweber LF
    Curr Biol; 2001 Jan; 11(2):65-74. PubMed ID: 11231122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alpha- and beta-tubulin genes of Euplotes octocarinatus.
    Liang A; Schmidt HJ; Heckmann K
    J Eukaryot Microbiol; 1994; 41(2):163-9. PubMed ID: 8167618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two different macronuclear EF-1 alpha-encoding genes of the ciliate Euplotes crassus are very dissimilar in their sequences, copy numbers and transcriptional activities.
    Bergemann J; Florian V; Kremser T; Klein A
    Gene; 1996 Feb; 168(1):109-12. PubMed ID: 8626055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Localization of polypeptides release factors and ribosome protein L11 in Euplotes octocarinatus].
    Chai B; Li N; Wang J; Shen Q; Zhang Z; Liang A
    Sheng Wu Gong Cheng Xue Bao; 2010 Feb; 26(2):237-43. PubMed ID: 20432944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifty ciliates: frequent programmed translational frameshifting in euplotids.
    Klobutcher LA; Farabaugh PJ
    Cell; 2002 Dec; 111(6):763-6. PubMed ID: 12526802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.