BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11750900)

  • 1. The ability of various chemicals to elicit olfactory beta-waves in the pyriform cortex of meadow voles (Microtus pennsylvanicus) and laboratory rats (Rattus norvegicus).
    Vanderwolf CH; Zibrowski EM; Wakarchuk D
    Brain Res; 2002 Jan; 924(2):151-8. PubMed ID: 11750900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast wave activity in the rat rhinencephalon: elicitation by the odors of phytochemicals, organic solvents, and a rodent predator.
    Zibrowski EM; Hoh TE; Vanderwolf CH
    Brain Res; 1998 Aug; 800(2):207-15. PubMed ID: 9685644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyriform cortex beta-waves: odor-specific sensitization following repeated olfactory stimulation.
    Vanderwolf CH; Zibrowski EM
    Brain Res; 2001 Feb; 892(2):301-8. PubMed ID: 11172777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory fast wave activity in the rat pyriform cortex: relations to olfaction and behavior.
    Zibrowski EM; Vanderwolf CH
    Brain Res; 1997 Aug; 766(1-2):39-49. PubMed ID: 9359585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of a natural stressor (predator odor) on locomotor activity in the meadow vole (Microtus pennsylvanicus): modulation by sex, reproductive condition and gonadal hormones.
    Perrot-Sinal T; Ossenkopp KP; Kavaliers M
    Psychoneuroendocrinology; 2000 Apr; 25(3):259-76. PubMed ID: 10737697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of predator odors as repellents to reduce feeding damage by herbivores : III. Montane and meadow voles (Microtus montanus andMicrotus pennsylvanicus).
    Sullivan TP; Crump DR; Sullivan DS
    J Chem Ecol; 1988 Jan; 14(1):363-77. PubMed ID: 24277015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of odors in olfactory bulb, pyriform-amygdaloid areas, and orbitofrontal cortex of the monkey.
    Tanabe T; Iino M; Takagi SF
    J Neurophysiol; 1975 Sep; 38(5):1284-96. PubMed ID: 809550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cat odor, but not trimethylthiazoline (fox odor), activates accessory olfactory and defense-related brain regions in rats.
    Staples LG; McGregor IS; Apfelbach R; Hunt GE
    Neuroscience; 2008 Feb; 151(4):937-47. PubMed ID: 18201833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitral cell temporal response patterns evoked by odor mixtures in the rat olfactory bulb.
    Giraudet P; Berthommier F; Chaput M
    J Neurophysiol; 2002 Aug; 88(2):829-38. PubMed ID: 12163534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amount of time that a meadow vole, Microtus pennsylvanicus, self-grooms is affected by its reproductive state and that of the odor donor.
    Ferkin MH
    Behav Processes; 2006 Nov; 73(3):266-71. PubMed ID: 16876967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of vomeronasal organ removal on behavioral estrus and mating latency in female meadow voles (Microtus pennsylvanicus).
    Meek LR; Lee TM; Rogers EA; Hernandez RG
    Biol Reprod; 1994 Sep; 51(3):400-4. PubMed ID: 7803612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical factors determine olfactory system beta oscillations in waking rats.
    Lowry CA; Kay LM
    J Neurophysiol; 2007 Jul; 98(1):394-404. PubMed ID: 17442770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of prolactin and testosterone in mediating seasonal differences in the self-grooming behavior of male meadow voles, Microtus pennsylvanicus.
    Leonard ST; Alizadeh-Naderi R; Stokes K; Ferkin MH
    Physiol Behav; 2005 Jul; 85(4):461-8. PubMed ID: 15979110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Home-cage odors spatial cues elicit theta phase/gamma amplitude coupling between olfactory bulb and dorsal hippocampus.
    Pena RR; Medeiros DC; Guarnieri LO; Guerra JB; Carvalho VR; Mendes EMAM; Pereira GS; Moraes MFD
    Neuroscience; 2017 Nov; 363():97-106. PubMed ID: 28890054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sexually dimorphic aspects of spontaneous activity in meadow voles (Microtus pennsylvanicus): effects of exposure to fox odor.
    Perrot-Sinal TS; Heale VR; Ossenkopp KP; Kavaliers M
    Behav Neurosci; 1996 Oct; 110(5):1126-32. PubMed ID: 8919015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Odor maps in the olfactory cortex.
    Zou Z; Li F; Buck LB
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7724-9. PubMed ID: 15911779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. History-Dependent Odor Processing in the Mouse Olfactory Bulb.
    Vinograd A; Livneh Y; Mizrahi A
    J Neurosci; 2017 Dec; 37(49):12018-12030. PubMed ID: 29109236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odor representations in mammalian cortical circuits.
    Isaacson JS
    Curr Opin Neurobiol; 2010 Jun; 20(3):328-31. PubMed ID: 20207132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor-driven activity in the olfactory cortex of an in vitro isolated guinea pig whole brain with olfactory epithelium.
    Ishikawa T; Sato T; Shimizu A; Tsutsui K; de Curtis M; Iijima T
    J Neurophysiol; 2007 Jan; 97(1):670-9. PubMed ID: 16870834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Odor-induced fast waves in the dentate gyrus depend on a pathway through posterior cerebral cortex: effects of limbic lesions and trimethyltin.
    Heale VR; Vanderwolf CH
    Brain Res Bull; 1999 Nov; 50(4):291-9. PubMed ID: 10582527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.