These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11751231)

  • 1. Evolution of amino acid biosynthesis and enzymes with broad substrate specificity.
    Nishida H
    Bioinformatics; 2001 Dec; 17(12):1224-5. PubMed ID: 11751231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of selection for low cognate amino acid bias in amino acid biosynthetic enzymes.
    Alves R; Savageau MA
    Mol Microbiol; 2005 May; 56(4):1017-34. PubMed ID: 15853887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome rearrangement has orphaned the Escherichia coli K-12 AcpT phosphopantetheinyl transferase from its cognate Escherichia coli O157:H7 substrates.
    De Lay NR; Cronan JE
    Mol Microbiol; 2006 Jul; 61(1):232-42. PubMed ID: 16824108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evolution of Ebg enzyme provides clues about the evolution of catalysis and to evolutionary potential.
    Hall BG
    FEMS Microbiol Lett; 1999 May; 174(1):1-8. PubMed ID: 10234816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme specialization during the evolution of amino acid biosynthetic pathways.
    Parsot C; Saint-Girons I; Cohen GN
    Microbiol Sci; 1987 Sep; 4(9):258, 260-2. PubMed ID: 3153617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network analysis of metabolic enzyme evolution in Escherichia coli.
    Light S; Kraulis P
    BMC Bioinformatics; 2004 Feb; 5():15. PubMed ID: 15113413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications.
    Burkovski A; Krämer R
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):265-74. PubMed ID: 11935175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region.
    Belfaiza J; Parsot C; Martel A; de la Tour CB; Margarita D; Cohen GN; Saint-Girons I
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):867-71. PubMed ID: 3513164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guided evolution of enzymes with new substrate specificities.
    el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ
    J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity.
    Xie L; Miller LM; Chatterjee C; Averin O; Kelleher NL; van der Donk WA
    Science; 2004 Jan; 303(5658):679-81. PubMed ID: 14752162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the molecular basis of the broad substrate specificity of alpha-glucosidase from Bacillus sp. SAM1606.
    Noguchi A; Yano M; Ohshima Y; Hemmi H; Inohara-Ochiai M; Okada M; Min KS; Nakayama T; Nishino T
    J Biochem; 2003 Oct; 134(4):543-50. PubMed ID: 14607981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening and characterization of a novel esterase from a metagenomic library.
    Kim YJ; Choi GS; Kim SB; Yoon GS; Kim YS; Ryu YW
    Protein Expr Purif; 2006 Feb; 45(2):315-23. PubMed ID: 16061395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolutionary relationships between the two bacteria Escherichia coli and Haemophilus influenzae and their putative last common ancestor.
    de Rosa R; Labedan B
    Mol Biol Evol; 1998 Jan; 15(1):17-27. PubMed ID: 9491601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity.
    Jacques IB; Moutiez M; Witwinowski J; Darbon E; Martel C; Seguin J; Favry E; Thai R; Lecoq A; Dubois S; Pernodet JL; Gondry M; Belin P
    Nat Chem Biol; 2015 Sep; 11(9):721-7. PubMed ID: 26236937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of a Thermosensitive
    Vega DE; Margolin W
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29061666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic tools for selective labeling of proteins with alpha-15N-amino acids.
    Waugh DS
    J Biomol NMR; 1996 Sep; 8(2):184-92. PubMed ID: 8914274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Newly Determined Member of the
    Gao X; Zhang Z; Zhang Y; Li Y; Zhu H; Wang S; Li C
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341677
    [No Abstract]   [Full Text] [Related]  

  • 18. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12.
    Schoenlein PV; Roa BB; Winkler ME
    J Bacteriol; 1989 Nov; 171(11):6084-92. PubMed ID: 2681152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-substrate interaction and characterization of a 2,3-dihydroxybiphenyl 1,2-dioxygenase from Dyella ginsengisoli LA-4.
    Li A; Qu Y; Zhou J; Ma F
    FEMS Microbiol Lett; 2009 Mar; 292(2):231-9. PubMed ID: 19187202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D.
    Scholz-Schroeder BK; Soule JD; Gross DC
    Mol Plant Microbe Interact; 2003 Apr; 16(4):271-80. PubMed ID: 12744455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.