BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 11751260)

  • 1. Regulation of spindle formation by active mitogen-activated protein kinase and protein phosphatase 2A during mouse oocyte meiosis.
    Lu Q; Dunn RL; Angeles R; Smith GD
    Biol Reprod; 2002 Jan; 66(1):29-37. PubMed ID: 11751260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proper chromatin condensation and maintenance of histone H3 phosphorylation during mouse oocyte meiosis requires protein phosphatase activity.
    Swain JE; Ding J; Brautigan DL; Villa-Moruzzi E; Smith GD
    Biol Reprod; 2007 Apr; 76(4):628-38. PubMed ID: 17182892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression by protein phosphatases during pig oocyte maturation and fertilization in vitro.
    Sun QY; Wu GM; Lai L; Bonk A; Cabot R; Park KW; Day BN; Prather RS; Schatten H
    Biol Reprod; 2002 Mar; 66(3):580-8. PubMed ID: 11870061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of mitogen-activated protein kinase is regulated by protein kinase C, cyclic 3',5'-adenosine monophosphate, and protein phosphatase modulators during meiosis resumption in rat oocytes.
    Lu Q; Smith GD; Chen DY; Yang Z; Han ZM; Schatten H; Sun QY
    Biol Reprod; 2001 May; 64(5):1444-50. PubMed ID: 11319150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bora regulates meiotic spindle assembly and cell cycle during mouse oocyte meiosis.
    Zhai R; Yuan YF; Zhao Y; Liu XM; Zhen YH; Yang FF; Wang L; Huang CZ; Cao J; Huo LJ
    Mol Reprod Dev; 2013 Jun; 80(6):474-87. PubMed ID: 23610072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitogen activated protein kinase plays a significant role in metaphase II arrest, spindle morphology, and maintenance of maturation promoting factor activity in bovine oocytes.
    Gordo AC; He CL; Smith S; Fissore RA
    Mol Reprod Dev; 2001 May; 59(1):106-14. PubMed ID: 11335952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localisation of phosphorylated MAP kinase during the transition from meiosis I to meiosis II in pig oocytes.
    Lee J; Miyano T; Moor RM
    Zygote; 2000 May; 8(2):119-25. PubMed ID: 10857582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes.
    Verlhac MH; de Pennart H; Maro B; Cobb MH; Clarke HJ
    Dev Biol; 1993 Aug; 158(2):330-40. PubMed ID: 8344454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleoporin35 is a novel microtubule associated protein functioning in oocyte meiotic spindle architecture.
    Chen F; Jiao XF; Zhang JY; Wu D; Ding ZM; Wang YS; Miao YL; Huo LJ
    Exp Cell Res; 2018 Oct; 371(2):435-443. PubMed ID: 30195030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of ribosomal S6 protein kinase p90rsk during meiotic maturation and fertilization in pig oocytes: mitogen-activated protein kinase-associated activation and localization.
    Fan HY; Tong C; Lian L; Li SW; Gao WX; Cheng Y; Chen DY; Schatten H; Sun QY
    Biol Reprod; 2003 Mar; 68(3):968-77. PubMed ID: 12604650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in centrosomal domains during meiotic maturation in the human oocyte.
    Battaglia DE; Klein NA; Soules MR
    Mol Hum Reprod; 1996 Nov; 2(11):845-51. PubMed ID: 9237224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spindle formation and dynamics of gamma-tubulin and nuclear mitotic apparatus protein distribution during meiosis in pig and mouse oocytes.
    Lee J; Miyano T; Moor RM
    Biol Reprod; 2000 May; 62(5):1184-92. PubMed ID: 10775165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein phosphatases control MAP kinase activation and microtubule organization during rat oocyte maturation.
    Zernicka-Goetz M; Verlhac MH; Géraud G; Kubiak JZ
    Eur J Cell Biol; 1997 Jan; 72(1):30-8. PubMed ID: 9013723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique subcellular distribution of phosphorylated Plk1 (Ser137 and Thr210) in mouse oocytes during meiotic division and pPlk1(Ser137) involvement in spindle formation and REC8 cleavage.
    Du J; Cao Y; Wang Q; Zhang N; Liu X; Chen D; Liu X; Xu Q; Ma W
    Cell Cycle; 2015; 14(22):3566-79. PubMed ID: 26654596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitogen-activated protein kinase activity during goat oocyte maturation and the acquisition of meiotic competence.
    Dedieu T; Gall L; Crozet N; Sevellec C; Ruffini S
    Mol Reprod Dev; 1996 Nov; 45(3):351-8. PubMed ID: 8916046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbing microtubule integrity blocks AMP-activated protein kinase-induced meiotic resumption in cultured mouse oocytes.
    Ya R; Downs SM
    Zygote; 2014 Feb; 22(1):91-102. PubMed ID: 23199370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous regulators of protein phosphatase-1 during mouse oocyte development and meiosis.
    Wang X; Swain JE; Bollen M; Liu XT; Ohl DA; Smith GD
    Reproduction; 2004 Nov; 128(5):493-502. PubMed ID: 15509695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEK1/2 is a critical regulator of microtubule assembly and spindle organization during rat oocyte meiotic maturation.
    Sun SC; Xiong B; Lu SS; Sun QY
    Mol Reprod Dev; 2008 Oct; 75(10):1542-8. PubMed ID: 18270979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro.
    Sun QY; Lai L; Park KW; Kühholzer B; Prather RS; Schatten H
    Biol Reprod; 2001 Mar; 64(3):879-89. PubMed ID: 11207204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes.
    Fan HY; Huo LJ; Meng XQ; Zhong ZS; Hou Y; Chen DY; Sun QY
    Biol Reprod; 2003 Nov; 69(5):1552-64. PubMed ID: 12826587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.