BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11751321)

  • 1. Salt-induced conformation and interaction changes of nucleosome core particles.
    Mangenot S; Leforestier A; Vachette P; Durand D; Livolant F
    Biophys J; 2002 Jan; 82(1 Pt 1):345-56. PubMed ID: 11751321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of histone tails in the conformation and interactions of nucleosome core particles.
    Bertin A; Leforestier A; Durand D; Livolant F
    Biochemistry; 2004 Apr; 43(16):4773-80. PubMed ID: 15096046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles.
    Yang Y; Lyubartsev AP; Korolev N; Nordenskiöld L
    Biophys J; 2009 Mar; 96(6):2082-94. PubMed ID: 19289035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H2A and H2B tails are essential to properly reconstitute nucleosome core particles.
    Bertin A; Durand D; Renouard M; Livolant F; Mangenot S
    Eur Biophys J; 2007 Nov; 36(8):1083-94. PubMed ID: 17882413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    Biophys J; 2006 Jun; 90(12):4305-16. PubMed ID: 16565063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H3 and H4 histone tails play a central role in the interactions of recombinant NCPs.
    Bertin A; Renouard M; Pedersen JS; Livolant F; Durand D
    Biophys J; 2007 Apr; 92(7):2633-45. PubMed ID: 17237203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.
    Fan Y; Korolev N; Lyubartsev AP; Nordenskiöld L
    PLoS One; 2013; 8(2):e54228. PubMed ID: 23418426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation-induced polyelectrolyte-polyelectrolyte attraction in solutions of DNA and nucleosome core particles.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):32-47. PubMed ID: 19758583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    Sci Rep; 2018 Jan; 8(1):1543. PubMed ID: 29367745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Simulation of Stacked Nucleosome Core Particles: Tail Bridging, the H4 Tail, and Effect of Hydrophobic Forces.
    Saurabh S; Glaser MA; Lansac Y; Maiti PK
    J Phys Chem B; 2016 Mar; 120(12):3048-60. PubMed ID: 26931280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spermidine-induced aggregation of nucleosome core particles: evidence for multiple liquid crystalline phases.
    Leforestier A; Fudaley S; Livolant F
    J Mol Biol; 1999 Jul; 290(2):481-94. PubMed ID: 10390346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation of the nucleosome within the higher order structure of chromatin.
    McGhee JD; Rau DC; Charney E; Felsenfeld G
    Cell; 1980 Nov; 22(1 Pt 1):87-96. PubMed ID: 7428043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How many base-pairs per turn does DNA have in solution and in chromatin? An answer from wide-angle X-ray scattering.
    Damaschun G; Damaschun H; Misselwitz R; Pospelov VA; Zalenskaya IA; Zirwer D; Müller JJ; Vorobev VI
    Biomed Biochim Acta; 1983; 42(6):697-703. PubMed ID: 6639645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the effects of DNA-protein interactions on DNA hole transport: the N-terminal histone tails modulate the distribution of oxidative damage and chemical lesions in the nucleosome core particle.
    Davis WB; Bjorklund CC; Deline M
    Biochemistry; 2012 Apr; 51(14):3129-42. PubMed ID: 22409399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale modelling of nucleosome core particle aggregation.
    Lyubartsev AP; Korolev N; Fan Y; Nordenskiöld L
    J Phys Condens Matter; 2015 Feb; 27(6):064111. PubMed ID: 25563982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome structure and conformational changes.
    McGhee JD; Felsenfeld G; Eisenberg H
    Biophys J; 1980 Oct; 32(1):261-70. PubMed ID: 6264987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of linker DNA on the structure and interaction of nucleosome core particles.
    Huang YC; Su CJ; Korolev N; Berezhnoy NV; Wang S; Soman A; Chen CY; Chen HL; Jeng US; Nordenskiöld L
    Soft Matter; 2018 Nov; 14(45):9096-9106. PubMed ID: 30215440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions.
    Zhang F; Skoda MW; Jacobs RM; Martin RA; Martin CM; Schreiber F
    J Phys Chem B; 2007 Jan; 111(1):251-9. PubMed ID: 17201449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray structure of the nucleosome core particle.
    Uberbacher EC; Bunick GJ
    J Biomol Struct Dyn; 1985 Jun; 2(6):1033-55. PubMed ID: 3916941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation of nucleosomes by divalent cations.
    de Frutos M; Raspaud E; Leforestier A; Livolant F
    Biophys J; 2001 Aug; 81(2):1127-32. PubMed ID: 11463653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.