These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 11751334)
1. Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant. Knebel D; Sieber M; Reichelt R; Galla HJ; Amrein M Biophys J; 2002 Jan; 82(1 Pt 1):474-80. PubMed ID: 11751334 [TBL] [Abstract][Full Text] [Related]
2. A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant. Amrein M; von Nahmen A; Sieber M Eur Biophys J; 1997; 26(5):349-57. PubMed ID: 9352639 [TBL] [Abstract][Full Text] [Related]
3. The structure of a model pulmonary surfactant as revealed by scanning force microscopy. von Nahmen A; Schenk M; Sieber M; Amrein M Biophys J; 1997 Jan; 72(1):463-9. PubMed ID: 8994633 [TBL] [Abstract][Full Text] [Related]
4. Distribution of the surfactant-associated protein C within a lung surfactant model film investigated by near-field optical microscopy. Kramer A; Wintergalen A; Sieber M; Galla HJ; Amrein M; Guckenberger R Biophys J; 2000 Jan; 78(1):458-65. PubMed ID: 10620309 [TBL] [Abstract][Full Text] [Related]
5. Phase transitions in films of lung surfactant at the air-water interface. Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence light microscopy of pulmonary surfactant at the air-water interface of an air bubble of adjustable size. Knebel D; Sieber M; Reichelt R; Galla HJ; Amrein M Biophys J; 2002 Jul; 83(1):547-55. PubMed ID: 12080141 [TBL] [Abstract][Full Text] [Related]
7. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study. Hane F; Moores B; Amrein M; Leonenko Z Ultramicroscopy; 2009 Jul; 109(8):968-73. PubMed ID: 19398273 [TBL] [Abstract][Full Text] [Related]
8. Cholesterol modifies the properties of surface films of dipalmitoylphosphatidylcholine plus pulmonary surfactant-associated protein B or C spread or adsorbed at the air-water interface. Taneva S; Keough KM Biochemistry; 1997 Jan; 36(4):912-22. PubMed ID: 9020791 [TBL] [Abstract][Full Text] [Related]
9. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: II. Monolayers of pulmonary surfactant protein SP-C and phospholipids. Taneva S; Keough KM Biophys J; 1994 Apr; 66(4):1149-57. PubMed ID: 8038386 [TBL] [Abstract][Full Text] [Related]
10. Structures of surfactant films: a scanning force microscopy study. Grunder R; Gehr P; Bachofen H; Schürch S; Siegenthaler H Eur Respir J; 1999 Dec; 14(6):1290-6. PubMed ID: 10624757 [TBL] [Abstract][Full Text] [Related]
11. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids. Taneva S; Keough KM Biophys J; 1994 Apr; 66(4):1137-48. PubMed ID: 8038385 [TBL] [Abstract][Full Text] [Related]
12. Monolayer-multilayer transitions in a lung surfactant model: IR reflection-absorption spectroscopy and atomic force microscopy. Wang L; Cai P; Galla HJ; He H; Flach CR; Mendelsohn R Eur Biophys J; 2005 May; 34(3):243-54. PubMed ID: 15645307 [TBL] [Abstract][Full Text] [Related]
13. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: III. Proteins SP-B plus SP-C with phospholipids in spread monolayers. Taneva S; Keough KM Biophys J; 1994 Apr; 66(4):1158-66. PubMed ID: 8038387 [TBL] [Abstract][Full Text] [Related]
14. The phase behavior of lipid monolayers containing pulmonary surfactant protein C studied by fluorescence light microscopy. von Nahmen A; Post A; Galla HJ; Sieber M Eur Biophys J; 1997; 26(5):359-69. PubMed ID: 9352640 [TBL] [Abstract][Full Text] [Related]
15. Formation of three-dimensional protein-lipid aggregates in monolayer films induced by surfactant protein B. Krol S; Ross M; Sieber M; Künneke S; Galla HJ; Janshoff A Biophys J; 2000 Aug; 79(2):904-18. PubMed ID: 10920022 [TBL] [Abstract][Full Text] [Related]
16. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN. Picardi MV; Cruz A; Orellana G; Pérez-Gil J Biochim Biophys Acta; 2011 Mar; 1808(3):696-705. PubMed ID: 21126510 [TBL] [Abstract][Full Text] [Related]
17. Effect of hydrophobic surfactant peptides SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy. Krüger P; Schalke M; Wang Z; Notter RH; Dluhy RA; Lösche M Biophys J; 1999 Aug; 77(2):903-14. PubMed ID: 10423435 [TBL] [Abstract][Full Text] [Related]
18. Nanoparticle interaction with model lung surfactant monolayers. Harishchandra RK; Saleem M; Galla HJ J R Soc Interface; 2010 Feb; 7 Suppl 1(Suppl 1):S15-26. PubMed ID: 19846443 [TBL] [Abstract][Full Text] [Related]
19. Langmuir-Blodgett films formed by continuously varying surface pressure. Characterization by IR spectroscopy and epifluorescence microscopy. Wang L; Cruz A; Flach CR; Pérez-Gil J; Mendelsohn R Langmuir; 2007 Apr; 23(9):4950-8. PubMed ID: 17388613 [TBL] [Abstract][Full Text] [Related]
20. Effect of cholesterol and amyloid-β peptide on structure and function of mixed-lipid films and pulmonary surfactant BLES: an atomic force microscopy study. Hane F; Drolle E; Leonenko Z Nanomedicine; 2010 Dec; 6(6):808-14. PubMed ID: 20493966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]