These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 11752401)

  • 1. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation.
    Kiick KL; Saxon E; Tirrell DA; Bertozzi CR
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):19-24. PubMed ID: 11752401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo.
    Tanrikulu IC; Schmitt E; Mechulam Y; Goddard WA; Tirrell DA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15285-90. PubMed ID: 19706454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An engineered methionyl-tRNA synthetase enables azidonorleucine incorporation in methionine prototrophic bacteria.
    Abdeljabbar DM; Klein TJ; Link AJ
    Chembiochem; 2011 Jul; 12(11):1699-702. PubMed ID: 21671329
    [No Abstract]   [Full Text] [Related]  

  • 4. Enzyme-induced covalent modification of methionyl-tRNA synthetase from Bacillus stearothermophilus by methionyl-adenylate: identification of the labeled amino acid residues by matrix-assisted laser desorption-ionization mass spectrometry.
    Hountondji C; Beauvallet C; Pernollet JC; Blanquet S
    J Protein Chem; 2000 Oct; 19(7):563-8. PubMed ID: 11233169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of bioorthogonal reactions with azides.
    Agard NJ; Baskin JM; Prescher JA; Lo A; Bertozzi CR
    ACS Chem Biol; 2006 Nov; 1(10):644-8. PubMed ID: 17175580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective enrichment of azide-containing peptides from complex mixtures.
    Nessen MA; Kramer G; Back J; Baskin JM; Smeenk LE; de Koning LJ; van Maarseveen JH; de Jong L; Bertozzi CR; Hiemstra H; de Koster CG
    J Proteome Res; 2009 Jul; 8(7):3702-11. PubMed ID: 19402736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity and specificity of substrate binding in methionyl-tRNA synthetase.
    Datta D; Vaidehi N; Zhang D; Goddard WA
    Protein Sci; 2004 Oct; 13(10):2693-705. PubMed ID: 15388861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an expanded set of translationally active methionine analogues in Escherichia coli.
    Kiick KL; Weberskirch R; Tirrell DA
    FEBS Lett; 2001 Jul; 502(1-2):25-30. PubMed ID: 11478942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of β
    Nigro G; Bourcier S; Lazennec-Schurdevin C; Schmitt E; Marlière P; Mechulam Y
    J Struct Biol; 2020 Feb; 209(2):107435. PubMed ID: 31862305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase.
    Crepin T; Schmitt E; Mechulam Y; Sampson PB; Vaughan MD; Honek JF; Blanquet S
    J Mol Biol; 2003 Sep; 332(1):59-72. PubMed ID: 12946347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase.
    Fourmy D; Meinnel T; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Jun; 231(4):1068-77. PubMed ID: 8515465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fluorogenic dye activated by the staudinger ligation.
    Lemieux GA; De Graffenried CL; Bertozzi CR
    J Am Chem Soc; 2003 Apr; 125(16):4708-9. PubMed ID: 12696879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and NMR studies of [methyl-13C]methionine-labeled truncated methionyl-tRNA synthetase.
    Rosevear PR
    Biochemistry; 1988 Oct; 27(20):7931-9. PubMed ID: 3061464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of bioisosteric effects on the interaction of substrates/ inhibitors with the methionyl-tRNA synthetase from Escherichia coli.
    Vaughan MD; Sampson PB; Daub E; Honek JF
    Med Chem; 2005 May; 1(3):227-37. PubMed ID: 16787318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine.
    Ohno S; Matsui M; Yokogawa T; Nakamura M; Hosoya T; Hiramatsu T; Suzuki M; Hayashi N; Nishikawa K
    J Biochem; 2007 Mar; 141(3):335-43. PubMed ID: 17202192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How methionyl-tRNA synthetase creates its amino acid recognition pocket upon L-methionine binding.
    Serre L; Verdon G; Choinowski T; Hervouet N; Risler JL; Zelwer C
    J Mol Biol; 2001 Mar; 306(4):863-76. PubMed ID: 11243794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The catalytic flexibility of tRNAIle-lysidine synthetase can generate alternative tRNA substrates for isoleucyl-tRNA synthetase.
    Salowe SP; Wiltsie J; Hawkins JC; Sonatore LM
    J Biol Chem; 2009 Apr; 284(15):9656-62. PubMed ID: 19233850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proofreading and the evolution of a methyl donor function. Cyclization of methionine to S-methyl homocysteine thiolactone by Escherichia coli methionyl-tRNA synthetase.
    Jakubowski H
    J Biol Chem; 1993 Mar; 268(9):6549-53. PubMed ID: 8454625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy cost of translational proofreading in vivo. The aminoacylation of transfer RNA in Escherichia coli.
    Jakubowski H
    Ann N Y Acad Sci; 1994 Nov; 745():4-20. PubMed ID: 7530434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.