These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1175368)

  • 1. A model of heat flow in the sheep exposed to high levels of solar radiation.
    Vera RR; Koong LJ; Morris JG
    Comput Programs Biomed; 1975 Aug; 4(4):214-8. PubMed ID: 1175368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air movement and heat loss from sheep. III. Components of insulation in a controlled environment.
    McArthur AJ
    Proc R Soc Lond B Biol Sci; 1980 Aug; 209(1175):219-37. PubMed ID: 6107916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air movement and heat loss from sheep. II. Thermal insulation of fleece in wind.
    McArthur AJ; Monteith JL
    Proc R Soc Lond B Biol Sci; 1980 Aug; 209(1175):209-17. PubMed ID: 6107915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative model for predicting thermal balance in exercising horses.
    Mostert HJ; Lund RJ; Guthrie AJ; Cilliers PJ
    Equine Vet J Suppl; 1996 Jul; (22):7-15. PubMed ID: 8894545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air movement and heat loss from sheep. I. Boundary layer insulation of a model sheep, with and without fleece.
    McArthur AJ; Monteith JL
    Proc R Soc Lond B Biol Sci; 1980 Aug; 209(1175):187-208. PubMed ID: 6107914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of complex radiative and convective environments on the thermal biology of the white-crowned sparrow (Zonotrichia leucophrys gambelii).
    Wolf BO; Wooden KM; Walsberg GE
    J Exp Biol; 2000 Feb; 203(Pt 4):803-11. PubMed ID: 10648222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-thermal responses and heat balance of a hair coat sheep breed raised under an equatorial semi-arid environment.
    de França Carvalho Fonsêca V; Maia ASC; Saraiva EP; de Melo Costa CC; da Silva RG; Abdoun KA; Al-Haidary AA; Samara EM; Fuller A
    J Therm Biol; 2019 Aug; 84():83-91. PubMed ID: 31466794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-of-day effects of exposure to solar radiation on thermoregulation during outdoor exercise in the heat.
    Otani H; Goto T; Goto H; Shirato M
    Chronobiol Int; 2017; 34(9):1224-1238. PubMed ID: 28910548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indices of environmental temperatures for primates in open habitats.
    Hill R; Weingrill T; Barrett L; Henzi SP
    Primates; 2004 Jan; 45(1):7-13. PubMed ID: 14608507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment.
    Fonseca VC; Saraiva EP; Maia ASC; Nascimento CCN; da Silva JA; Pereira WE; Filho ECP; Almeida MEV
    Int J Biometeorol; 2017 May; 61(5):777-784. PubMed ID: 27726009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fur of mammals in exposed environments; do crypsis and thermal needs necessarily conflict? The polar bear and marsupial koala compared.
    Dawson TJ; Webster KN; Maloney SK
    J Comp Physiol B; 2014 Feb; 184(2):273-84. PubMed ID: 24366474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal adjustment of solar heat gain independent of coat coloration in a desert mammal.
    Walsberg GE; Weaver T; Wolf BO
    Physiol Zool; 1997; 70(2):150-7. PubMed ID: 9231387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A canine thermal model for simulating temperature responses of military working dogs.
    Potter AW; Berglund LG; O'Brien C
    J Therm Biol; 2020 Jul; 91():102651. PubMed ID: 32716889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily rhythmicity of the thermoregulatory responses of locally adapted Brazilian sheep in a semiarid environment.
    da Silva WE; Leite JHGM; de Sousa JER; Costa WP; da Silva WST; Guilhermino MM; Asensio LAB; Façanha DAE
    Int J Biometeorol; 2017 Jul; 61(7):1221-1231. PubMed ID: 28091856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the potential of evaporative cooling for heat-stress relief.
    Berman A
    J Dairy Sci; 2006 Oct; 89(10):3817-25. PubMed ID: 16960056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal interaction between animal and microclimate: a comprehensive model.
    McArthur AJ
    J Theor Biol; 1987 May; 126(2):203-38. PubMed ID: 3657231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do metabolic responses to solar radiation scale directly with intensity of irradiance?
    Walsberg GE; Tracy RL; Hoffman TC
    J Exp Biol; 1997 Aug; 200(Pt 15):2115-21. PubMed ID: 9255951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of solar radiation and wind speed on metabolic heat production by two mammals with contrasting coat colours.
    Walsberg GE; Wolf BO
    J Exp Biol; 1995 Jul; 198(Pt 7):1499-507. PubMed ID: 7658187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that enforced sunlight exposure can cause hyperthermia in cattle ingesting low levels of ergot of rye (Claviceps purpurea), when air temperature and humidity conditions are only moderate.
    Bourke CA
    Aust Vet J; 2003 Sep; 81(9):553-8. PubMed ID: 15086095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of solar radiation, dietary energy, and time of feeding on thermoregulatory responses and energy balance in cattle in a hot environment.
    Brosh A; Aharoni Y; Degen AA; Wright D; Young BA
    J Anim Sci; 1998 Oct; 76(10):2671-7. PubMed ID: 9814908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.