BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11754249)

  • 1. Kinetics and isotope patterns of ethanol and acetaldehyde emissions from yeast fermentations of glucose and glucose-6,6-d2 using selected ion flow tube mass spectrometry: a case study.
    Smith D; Wang T; Spanel P
    Rapid Commun Mass Spectrom; 2002; 16(1):69-76. PubMed ID: 11754249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry.
    Smith D; Wang T; Sulé-Suso J; Spanel P; El Haj A
    Rapid Commun Mass Spectrom; 2003; 17(8):845-50. PubMed ID: 12672140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry.
    Turner C; Spanel P; Smith D
    Rapid Commun Mass Spectrom; 2006; 20(1):61-8. PubMed ID: 16312013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of acetaldehyde and carbon dioxide in the headspace of malignant and non-malignant lung cells in vitro by SIFT-MS.
    Sulé-Suso J; Pysanenko A; Spanel P; Smith D
    Analyst; 2009 Dec; 134(12):2419-25. PubMed ID: 19918611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for metabolic flux analyses using isotope-labeled ethanol.
    Hollemeyer K; Velagapudi VR; Wittmann C; Heinzle E
    Rapid Commun Mass Spectrom; 2007; 21(3):336-42. PubMed ID: 17206598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis.
    Smith D; Spanel P
    Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural abundance hydrogen isotope affiliation between the reactants and the products in glucose fermentation with yeast.
    Pionnier S; Robins RJ; Zhang BL
    J Agric Food Chem; 2003 Mar; 51(7):2076-82. PubMed ID: 12643676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved selected ion flow tube mass spectrometric quantification of the volatile compounds generated by E. coli JM109 cultured in two different media.
    Chippendale TW; Španěl P; Smith D
    Rapid Commun Mass Spectrom; 2011 Aug; 25(15):2163-72. PubMed ID: 21710596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated FA-MS and SIFT-MS analyses of breath following ingestion of D2O and ethanol: total body water, dispersal kinetics and ethanol metabolism.
    Spanel P; Wang T; Smith D
    Physiol Meas; 2005 Aug; 26(4):447-57. PubMed ID: 15886440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of water vapour on selected ion flow tube mass spectrometric analyses of trace gases in humid air and breath.
    Spanĕl P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(20):1898-906. PubMed ID: 11013418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts.
    Vriesekoop F; Haass C; Pamment NB
    FEMS Yeast Res; 2009 May; 9(3):365-71. PubMed ID: 19416102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of volatile compounds in the headspace of aqueous liquids using selected ion flow tube mass spectrometry.
    Spanel P; Diskin AM; Abbott SM; Wang T; Smith D
    Rapid Commun Mass Spectrom; 2002; 16(22):2148-53. PubMed ID: 12415548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains.
    Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS
    FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization and molasses fermentation performance of a wild yeast strain operating in an extremely wide temperature range.
    Kopsahelis N; Nisiotou A; Kourkoutas Y; Panas P; Nychas GJ; Kanellaki M
    Bioresour Technol; 2009 Oct; 100(20):4854-62. PubMed ID: 19520567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of ethanol decay in mouth- and nose-exhaled breath measured on-line by selected ion flow tube mass spectrometry following varying doses of alcohol.
    Smith D; Pysanenko A; Spanel P
    Rapid Commun Mass Spectrom; 2010 Apr; 24(7):1066-74. PubMed ID: 20213689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corn starch gel for yeast cell entrapment. A view for catalysis of wine fermentation.
    Kandylis P; Goula A; Koutinas AA
    J Agric Food Chem; 2008 Dec; 56(24):12037-45. PubMed ID: 19035657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile compounds of wines produced by cells immobilized on grape skins.
    Mallouchos A; Skandamis P; Loukatos P; Komaitis M; Koutinas A; Kanellaki M
    J Agric Food Chem; 2003 May; 51(10):3060-6. PubMed ID: 12720392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.