These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1175464)

  • 21. [Internucleosome interaction: detection of dinucleosome fragmentation of chromatin by micrococcal nuclease. Analysis of the products of cleavage of chromatin from rat liver nuclei and L cells by micrococcal nuclease].
    Kir'ianov GI; Smirnova TA; Manamsh'ian TA; Khodosovskaia AM
    Biokhimiia; 1987 Nov; 52(11):1855-66. PubMed ID: 3440114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in chromatin structure at the replication fork. II The DNPs containing nascent DNA and a transient chromatin modification detected by DNAase I.
    Galili G; Levy A; Jakob KM
    Nucleic Acids Res; 1981 Aug; 9(16):3991-4005. PubMed ID: 6272192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Analysis of brain chromatin subunit organization].
    Miul'berg AA; Tishchenko LI; Karaiagina IIu; Grigorbeva MB
    Biokhimiia; 1978 Feb; 43(2):340-9. PubMed ID: 647083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of the antitumor protein auromomycin on HeLa S3 nuclei. Release of soluble chromatin.
    Rauscher F; Mueller G; Beerman T
    Mol Pharmacol; 1983 Jul; 24(1):97-102. PubMed ID: 6306438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alteration of higher order structure of rat liver chromatin by dietary composition.
    Castro CE; Sevall JS
    J Nutr; 1980 Jan; 110(1):105-16. PubMed ID: 7354375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of chromatin structure on the distribution of DNA repair synthesis studied by nuclease digestion.
    Bodell WJ; Banerjee MR
    Nucleic Acids Res; 1979 Jan; 6(1):359-70. PubMed ID: 424297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNase I and nuclease S1 sensitivity of the rabbit beta 1 globin gene in nuclei and in supercoiled plasmids.
    Margot JB; Hardison RC
    J Mol Biol; 1985 Jul; 184(2):195-210. PubMed ID: 2993630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The photoaddition of trimethylpsoralen to Drosophila melanogaster nuclei: a probe for chromatin substructure.
    Wieshahn GP; Hyde JE; Hearst JE
    Biochemistry; 1977 Mar; 16(5):925-32. PubMed ID: 402933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin fractionation procedure that yields nucleosomes containing near-stoichiometric amounts of high mobility group nonhistone chromosomal proteins.
    Jackson JB; Pollock JM; Rill RL
    Biochemistry; 1979 Aug; 18(17):3739-48. PubMed ID: 476083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Undermethylation of DNA in mononucleosomes solubilized by micrococcal nuclease digestion of HeLa cell nuclei.
    Hatayama T; Nakamura T; Yukioka M
    Biochem Int; 1984 Aug; 9(2):251-8. PubMed ID: 6487345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and properties of structured chromatin from Guerin ascites tumour and rat liver.
    Yaneva M; Dessev G
    Eur J Biochem; 1976 Jul; 66(3):535-42. PubMed ID: 954754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleosome periodicity in HeLa cell chromatin as probed by micrococcal nuclease.
    Butt TR; Jump DB; Smulson ME
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1628-32. PubMed ID: 109831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Persistence of the ten-nucleotide repeat in chromatin unfolded in urea, as revealed by digestion with deoxyribonuclease i.
    Yaneva M; Dessev G
    Nucleic Acids Res; 1976 Jul; 3(7):1761-7. PubMed ID: 967674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental study of the structure of sea urchin embryo and sperm chromatin using micrococcal nuclease.
    Keichline LD; Wassarman PM
    Biochim Biophys Acta; 1977 Mar; 475(1):139-51. PubMed ID: 849442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin structure of the chicken lysozyme gene domain as determined by chromatin fractionation and micrococcal nuclease digestion.
    Strätling WH; Dölle A; Sippel AE
    Biochemistry; 1986 Jan; 25(2):495-502. PubMed ID: 3955010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deoxyribonuclease I generates single-stranded gaps in chromatin deoxyribonucleic acid.
    Riley DE
    Biochemistry; 1980 Jun; 19(13):2977-92. PubMed ID: 6249343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of an endogenous nucleolytic reaction and of the action micrococcal nuclease and DNAase I on a salt-soluble, compact form of chromatin.
    Krueger RC
    Biochim Biophys Acta; 1978 Sep; 520(2):358-67. PubMed ID: 708740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial structure of chromatin derived in the preparation process.
    Ohba Y; Toyoda K
    J Biochem; 1983 Feb; 93(2):513-23. PubMed ID: 6841351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence specific cleavage of DNA by micrococcal nuclease.
    Hörz W; Altenburger W
    Nucleic Acids Res; 1981 Jun; 9(12):2643-58. PubMed ID: 7279658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleosome structure in Aspergillus nidulans.
    Morris NR
    Cell; 1976 Jul; 8(3):357-63. PubMed ID: 782724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.