BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 11755089)

  • 1. A method for the design of MRI radiofrequency coils based on triangular and pulse basis functions.
    Yau D; Lawrence B; Crozier S
    MAGMA; 2002 Jan; 13(3):145-51. PubMed ID: 11755089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inverse design of an open, head/neck RF coil for MRI.
    Lawrence BG; Crozier S; Cowin G; Yau DD
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1024-30. PubMed ID: 12214874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A time-harmonic inverse methodology for the design of RF coils in MRI.
    Lawrence BG; Crozier S; Yau DD; Doddrell DM
    IEEE Trans Biomed Eng; 2002 Jan; 49(1):64-71. PubMed ID: 11794773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation induced current in the RF coils of integrated linac-MR systems: the effect of buildup and magnetic field.
    Burke B; Ghila A; Fallone BG; Rathee S
    Med Phys; 2012 Aug; 39(8):5004-14. PubMed ID: 22894426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid inverse approach applied to the design of lumped-element RF coils.
    Fujita H; Petropoulos LS; Morich MA; Shvartsman SM; Brown RW
    IEEE Trans Biomed Eng; 1999 Mar; 46(3):353-61. PubMed ID: 10097470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI.
    Bidinosti CP; Kravchuk IS; Hayden ME
    J Magn Reson; 2005 Nov; 177(1):31-43. PubMed ID: 16099186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual optimization method of radiofrequency and quasistatic field simulations for reduction of eddy currents generated on 7T radiofrequency coil shielding.
    Zhao Y; Zhao T; Raval SB; Krishnamurthy N; Zheng H; Harris CT; Handler WB; Chronik BA; Ibrahim TS
    Magn Reson Med; 2015 Nov; 74(5):1461-9. PubMed ID: 25367703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid numerical techniques for the modelling of radiofrequency coils in MRI.
    Li BK; Liu F; Weber E; Crozier S
    NMR Biomed; 2009 Nov; 22(9):937-51. PubMed ID: 19089861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic perspective on the operation of RF coils at 1.5-11.7 Tesla.
    Ibrahim TS; Mitchell C; Schmalbrock P; Lee R; Chakeres DW
    Magn Reson Med; 2005 Sep; 54(3):683-90. PubMed ID: 16088934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Preliminary Study for Reference RF Coil at 11.7 T MRI: Based on Electromagnetic Field Simulation of Hybrid-BC RF Coil According to Diameter and Length at 3.0, 7.0 and 11.7 T.
    Seo JH; Chung JY
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-depth study of the electromagnetics of ultrahigh-field MRI.
    Ibrahim TS; Mitchell C; Abraham R; Schmalbrock P
    NMR Biomed; 2007 Feb; 20(1):58-68. PubMed ID: 17006885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils.
    Paulus DH; Braun H; Aklan B; Quick HH
    Med Phys; 2012 Jul; 39(7):4306-15. PubMed ID: 22830764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical optimization of a three-channel radiofrequency coil for open, vertical-field, MR-guided, focused ultrasound surgery using the hybrid method of moment/finite difference time domain method.
    Xin X; Wang D; Han J; Feng Y; Feng Q; Chen W
    NMR Biomed; 2012 Jul; 25(7):909-16. PubMed ID: 22161891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging.
    Van den Berg CA; Bartels LW; De Leeuw AA; Lagendijk JJ; Van de Kamer JB
    Phys Med Biol; 2004 Nov; 49(22):5029-42. PubMed ID: 15609556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation Study of Radio Frequency Safety and the Optimal Size of a Single-Channel Surface Radio Frequency Coil for Mice at 9.4 T Magnetic Resonance Imaging.
    Seo JH; Ryu Y; Chung JY
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid 2D-FDTD/3D-MoM method used for the analysis of MRI RF coils.
    Liu Y; Wang Q; Liu F
    Magn Reson Imaging; 2024 Feb; 106():77-84. PubMed ID: 37939971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse design of an organ-oriented RF coil for open, vertical-field, MR-guided, focused ultrasound surgery.
    Xin X; Han J; Feng Y; Feng Q; Chen W
    Magn Reson Imaging; 2012 Dec; 30(10):1519-26. PubMed ID: 22795928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for mapping the B1 field distribution of linear RF coils.
    Weis J; Andris P; Frollo I; Ahlström H
    MAGMA; 2005 Dec; 18(6):283-7. PubMed ID: 16344958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI.
    Trakic A; Jin J; Li MY; McClymont D; Weber E; Liu F; Crozier S
    J Magn Reson; 2013 Nov; 236():70-82. PubMed ID: 24076497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An inverse methodology for high-frequency RF coil design for MRI with de-emphasized B1 fields.
    Xu B; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1582-7. PubMed ID: 16189971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.