These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11755251)

  • 1. Revisited: the inertia tensor as a proprioceptive invariant in humans.
    Craig CM; Bourdin C
    Neurosci Lett; 2002 Jan; 317(2):106-10. PubMed ID: 11755251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is perception of upper body orientation based on the inertia tensor? Normogravity versus microgravity conditions.
    Gueguen N; Coyle T; Craig C; Bootsma R; Mouchnino L
    Exp Brain Res; 2004 Jun; 156(4):471-7. PubMed ID: 14968277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential exploitation of the inertia tensor in multi-joint arm reaching.
    Bernardin D; Isableu B; Fourcade P; Bardy BG
    Exp Brain Res; 2005 Dec; 167(4):487-95. PubMed ID: 16292573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pointing to oneself: active versus passive proprioception revisited and implications for internal models of motor system function.
    Capaday C; Darling WG; Stanek K; Van Vreeswijk C
    Exp Brain Res; 2013 Aug; 229(2):171-80. PubMed ID: 23756602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement.
    Goble DJ; Brown SH
    Exp Brain Res; 2007 Jul; 180(4):693-704. PubMed ID: 17297548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using proprioception to control ongoing actions: dominance of vision or altered proprioceptive weighing?
    Goodman R; Tremblay L
    Exp Brain Res; 2018 Jul; 236(7):1897-1910. PubMed ID: 29696313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling reaching movements during self-motion: body-fixed versus Earth-fixed targets.
    Guillaud E; Simoneau M; Gauthier G; Blouin J
    Motor Control; 2006 Oct; 10(4):330-47. PubMed ID: 17293616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to Coriolis force perturbation of movement trajectory; role of proprioceptive and cutaneous somatosensory feedback.
    Lackner JR; DiZio P
    Adv Exp Med Biol; 2002; 508():69-78. PubMed ID: 12171153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arm-trunk coordination in the absence of proprioception.
    Tunik E; Poizner H; Levin MF; Adamovich SV; Messier J; Lamarre Y; Feldman AG
    Exp Brain Res; 2003 Dec; 153(3):343-55. PubMed ID: 14504854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets.
    Berkinblit MB; Fookson OI; Smetanin B; Adamovich SV; Poizner H
    Exp Brain Res; 1995; 107(2):326-30. PubMed ID: 8773251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optic ataxia is not only 'optic': impaired spatial integration of proprioceptive information.
    Blangero A; Ota H; Delporte L; Revol P; Vindras P; Rode G; Boisson D; Vighetto A; Rossetti Y; Pisella L
    Neuroimage; 2007; 36 Suppl 2():T61-8. PubMed ID: 17499171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects.
    Bourdin C; Gauthier G; Blouin J; Vercher JL
    Neurosci Lett; 2001 Mar; 301(1):25-8. PubMed ID: 11239708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper limb asymmetries in the utilization of proprioceptive feedback.
    Goble DJ; Lewis CA; Brown SH
    Exp Brain Res; 2006 Jan; 168(1-2):307-11. PubMed ID: 16311728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting head movements in humans: Compensation for disturbance from simultaneous body rotations.
    Becker W; Kassubek J; Maurer C; Mergner T
    Hum Mov Sci; 2018 Oct; 61():197-218. PubMed ID: 30189333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proprioceptive coordination of movement sequences: role of velocity and position information.
    Cordo P; Carlton L; Bevan L; Carlton M; Kerr GK
    J Neurophysiol; 1994 May; 71(5):1848-61. PubMed ID: 8064352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-field adaptation without proprioception: can vision be used to model limb dynamics?
    Sarlegna FR; Malfait N; Bringoux L; Bourdin C; Vercher JL
    Neuropsychologia; 2010 Jan; 48(1):60-7. PubMed ID: 19695273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficits in the ability to use proprioceptive feedback in children with hemiplegic cerebral palsy.
    Goble DJ; Hurvitz EA; Brown SH
    Int J Rehabil Res; 2009 Sep; 32(3):267-9. PubMed ID: 19318973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between gaze and pointing toward remembered visual targets.
    Admiraal MA; Keijsers NL; Gielen CC
    J Neurophysiol; 2003 Oct; 90(4):2136-48. PubMed ID: 12815019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.