These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11755268)

  • 1. Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process.
    Velaga SP; Ghaderi R; Carlfors J
    Int J Pharm; 2002 Jan; 231(2):155-66. PubMed ID: 11755268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and aerodynamic behaviour of glucocorticoid particles prepared by a supercritical fluids process.
    Velaga SP; Bergh S; Carlfors J
    Eur J Pharm Sci; 2004 Mar; 21(4):501-9. PubMed ID: 14998581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Pharm Res; 2008 Mar; 25(3):563-77. PubMed ID: 17828444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of budesonide/gamma-cyclodextrin complexes in supercritical fluids with a novel SEDS method.
    Toropainen T; Velaga S; Heikkilä T; Matilainen L; Jarho P; Carlfors J; Lehto VP; Järvinen T; Järvinen K
    J Pharm Sci; 2006 Oct; 95(10):2235-45. PubMed ID: 16883551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance.
    Palakodaty S; York P; Pritchard J
    Pharm Res; 1998 Dec; 15(12):1835-43. PubMed ID: 9892466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical fluids crystallization of budesonide and flunisolide.
    Velaga SP; Berger R; Carlfors J
    Pharm Res; 2002 Oct; 19(10):1564-71. PubMed ID: 12425477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal doping aided by rapid expansion of supercritical solutions.
    Vemavarapu C; Mollan MJ; Needham TE
    AAPS PharmSciTech; 2002; 3(4):E29. PubMed ID: 12916923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization.
    Reverchon E; Adami R; Caputo G
    AAPS PharmSciTech; 2007 Dec; 8(4):E114. PubMed ID: 18181535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids.
    Ghaderi R; Artursson P; Carlfors J
    Eur J Pharm Sci; 2000 Mar; 10(1):1-9. PubMed ID: 10699378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS).
    Kang Y; Yin G; Ouyang P; Huang Z; Yao Y; Liao X; Chen A; Pu X
    J Colloid Interface Sci; 2008 Jun; 322(1):87-94. PubMed ID: 18402971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical fluid processing of proteins: lysozyme precipitation from aqueous solution.
    Moshashaée S; Bisrat M; Forbes RT; Quinn EA; Nyqvist H; York P
    J Pharm Pharmacol; 2003 Feb; 55(2):185-92. PubMed ID: 12631410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.
    Rehman M; Shekunov BY; York P; Colthorpe P
    J Pharm Sci; 2001 Oct; 90(10):1570-82. PubMed ID: 11745715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical fluids processing of recombinant human growth hormone.
    Velega SP; Carlfors J
    Drug Dev Ind Pharm; 2005 Jan; 31(2):135-49. PubMed ID: 15773281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
    Bakhbakhi Y; Charpentier PA; Rohani S
    Int J Pharm; 2006 Feb; 309(1-2):71-80. PubMed ID: 16412594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorph control of sulfathiazole in supercritical CO2.
    Kordikowski A; Shekunov T; York P
    Pharm Res; 2001 May; 18(5):682-8. PubMed ID: 11465426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
    Padrela L; Rodrigues MA; Velaga SP; Matos HA; de Azevedo EG
    Eur J Pharm Sci; 2009 Aug; 38(1):9-17. PubMed ID: 19477273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of solid dispersion particles prepared with SEDS.
    Juppo AM; Boissier C; Khoo C
    Int J Pharm; 2003 Jan; 250(2):385-401. PubMed ID: 12527165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.