BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11755520)

  • 1. F-actin assembly in Dictyostelium cell locomotion and shape oscillations propagates as a self-organized reaction-diffusion wave.
    Vicker MG
    FEBS Lett; 2002 Jan; 510(1-2):5-9. PubMed ID: 11755520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryotic cell locomotion depends on the propagation of self-organized reaction-diffusion waves and oscillations of actin filament assembly.
    Vicker MG
    Exp Cell Res; 2002 Apr; 275(1):54-66. PubMed ID: 11925105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction-diffusion waves of actin filament polymerization/depolymerization in Dictyostelium pseudopodium extension and cell locomotion.
    Vicker MG
    Biophys Chem; 2000 Apr; 84(2):87-98. PubMed ID: 10796025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual chemotaxis signalling regulates Dictyostelium development: intercellular cyclic AMP pulses and intracellular F-actin disassembly waves induce each other.
    Vicker MG; Grutsch JF
    Eur J Cell Biol; 2008 Oct; 87(10):845-61. PubMed ID: 18554748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoskeletal alterations in Dictyostelium induced by expression of human cdc42.
    Lee E; Knecht DA
    Eur J Cell Biol; 2001 Jun; 80(6):399-409. PubMed ID: 11484931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of novel feet of Dictyostelium cells during migration.
    Uchida KS; Yumura S
    J Cell Sci; 2004 Mar; 117(Pt 8):1443-55. PubMed ID: 15020673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architectural dynamics of F-actin in eupodia suggests their role in invasive locomotion in Dictyostelium.
    Fukui Y; de Hostos E; Yumura S; Kitanishi-Yumura T; Inou
    Exp Cell Res; 1999 May; 249(1):33-45. PubMed ID: 10328951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of GFP-coronin and eupodia in live Dictyostelium observed with real-time confocal optics.
    Fukui Y; de Hostos EL; Inoué S
    Biol Bull; 1997 Oct; 193(2):224-5. PubMed ID: 9390391
    [No Abstract]   [Full Text] [Related]  

  • 9. Subsecond reorganization of the actin network in cell motility and chemotaxis.
    Diez S; Gerisch G; Anderson K; Müller-Taubenberger A; Bretschneider T
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7601-6. PubMed ID: 15894626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lamellipodial localization of Dictyostelium myosin heavy chain kinase A is mediated via F-actin binding by the coiled-coil domain.
    Steimle PA; Licate L; Côté GP; Egelhoff TT
    FEBS Lett; 2002 Apr; 516(1-3):58-62. PubMed ID: 11959103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The locomotion, shape and pseudopodial dynamics of unstimulated Dictyostelium cells are not random.
    Killich T; Plath PJ; Wei X; Bultmann H; Rensing L; Vicker MG
    J Cell Sci; 1993 Dec; 106 ( Pt 4)():1005-13. PubMed ID: 7510298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles.
    Aizawa H; Fukui Y; Yahara I
    J Cell Sci; 1997 Oct; 110 ( Pt 19)():2333-44. PubMed ID: 9410873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin polymerization and pseudopod extension during amoeboid chemotaxis.
    Condeelis J; Hall A; Bresnick A; Warren V; Hock R; Bennett H; Ogihara S
    Cell Motil Cytoskeleton; 1988; 10(1-2):77-90. PubMed ID: 3052871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein-coronin fusion protein.
    Gerisch G; Albrecht R; Heizer C; Hodgkinson S; Maniak M
    Curr Biol; 1995 Nov; 5(11):1280-5. PubMed ID: 8574585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics of actin concentration during cytokinesis and locomotion in Dictyostelium.
    Yumura S; Fukui Y
    J Cell Sci; 1998 Aug; 111 ( Pt 15)():2097-108. PubMed ID: 9664031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WASP-interacting protein is important for actin filament elongation and prompt pseudopod formation in response to a dynamic chemoattractant gradient.
    Myers SA; Leeper LR; Chung CY
    Mol Biol Cell; 2006 Oct; 17(10):4564-75. PubMed ID: 16899512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of calcium-dependent actin-bundling proteins: characterization of Dictyostelium mutants lacking fimbrin and the 34-kilodalton protein.
    Pikzack C; Prassler J; Furukawa R; Fechheimer M; Rivero F
    Cell Motil Cytoskeleton; 2005 Dec; 62(4):210-31. PubMed ID: 16265631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. V-1 regulates capping protein activity in vivo.
    Jung G; Alexander CJ; Wu XS; Piszczek G; Chen BC; Betzig E; Hammer JA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):E6610-E6619. PubMed ID: 27791032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic organization of the actin system in the motile cells of Dictyostelium.
    Bretschneider T; Jonkman J; Köhler J; Medalia O; Barisic K; Weber I; Stelzer EH; Baumeister W; Gerisch G
    J Muscle Res Cell Motil; 2002; 23(7-8):639-49. PubMed ID: 12952063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures.
    Pang KM; Lee E; Knecht DA
    Curr Biol; 1998 Mar; 8(7):405-8. PubMed ID: 9545201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.