These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 11755683)

  • 1. Carbon flux and fatty acid synthesis in plants.
    Rawsthorne S
    Prog Lipid Res; 2002 Mar; 41(2):182-96. PubMed ID: 11755683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of carbon in non-green plastids.
    Fischer K; Weber A
    Trends Plant Sci; 2002 Aug; 7(8):345-51. PubMed ID: 12167329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower (Helianthus annuus L.) embryos.
    Pleite R; Pike MJ; Garcés R; Martínez-Force E; Rawsthorne S
    J Exp Bot; 2005 May; 56(415):1297-303. PubMed ID: 15767323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of transporters in supplying energy to plant plastids.
    Flügge UI; Häusler RE; Ludewig F; Gierth M
    J Exp Bot; 2011 Apr; 62(7):2381-92. PubMed ID: 21511915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a plastid acyl-acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids.
    Koo AJ; Fulda M; Browse J; Ohlrogge JB
    Plant J; 2005 Nov; 44(4):620-32. PubMed ID: 16262711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and structure of the heteromeric acetyl-CoA carboxylase.
    Salie MJ; Thelen JJ
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1207-1213. PubMed ID: 27091637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.
    Boyle NR; Sengupta N; Morgan JA
    PLoS One; 2017; 12(5):e0177292. PubMed ID: 28542252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid synthesis: from CO2 to functional genomics.
    Ohlrogge J; Pollard M; Bao X; Focke M; Girke T; Ruuska S; Mekhedov S; Benning C
    Biochem Soc Trans; 2000 Dec; 28(6):567-73. PubMed ID: 11171129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of carbon storage and partitioning in response to light and sugars.
    Geigenberger P; Kolbe A; Tiessen A
    J Exp Bot; 2005 Jun; 56(416):1469-79. PubMed ID: 15863446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic enhancement of fatty acid synthesis by targeting rat liver ATP:citrate lyase into plastids of tobacco.
    Rangasamy D; Ratledge C
    Plant Physiol; 2000 Apr; 122(4):1231-8. PubMed ID: 10759520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the control of long-chain-fatty acid synthesis in isolated intact spinach (Spinacia oleracea) chloroplasts.
    Roughan PG; Holland R; Slack CR
    Biochem J; 1979 Nov; 184(2):193-202. PubMed ID: 534525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid synthesis in pea root plastids is inhibited by the action of long-chain acyl- coenzyme as on metabolite transporters.
    Fox SR; Rawsthorne S; Hills MJ
    Plant Physiol; 2001 Jul; 126(3):1259-65. PubMed ID: 11457976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The import of phosphoenolpyruvate by plastids from developing embryos of oilseed rape, Brassica napus (L.), and its potential as a substrate for fatty acid synthesis.
    Kubis SE; Pike MJ; Everett CJ; Hill LM; Rawsthorne S
    J Exp Bot; 2004 Jul; 55(402):1455-62. PubMed ID: 15208349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis.
    Jessen D; Roth C; Wiermer M; Fulda M
    Plant Physiol; 2015 Feb; 167(2):351-66. PubMed ID: 25540329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of acyl-CoAs and acyl-CoA-binding protein in regulation of carbon supply for fatty acid biosynthesis.
    Fox SR; Rawsthorne S; Hills MJ
    Biochem Soc Trans; 2000 Dec; 28(6):672-4. PubMed ID: 11171165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Docking of acetyl-CoA carboxylase to the plastid envelope membrane attenuates fatty acid production in plants.
    Ye Y; Nikovics K; To A; Lepiniec L; Fedosejevs ET; Van Doren SR; Baud S; Thelen JJ
    Nat Commun; 2020 Dec; 11(1):6191. PubMed ID: 33273474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.).
    Hutchings D; Rawsthorne S; Emes MJ
    J Exp Bot; 2005 Feb; 56(412):577-85. PubMed ID: 15611146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetyl-acyl carrier protein is not a major intermediate in fatty acid biosynthesis in spinach.
    Jaworski JG; Post-Beittenmiller D; Ohlrogge JB
    Eur J Biochem; 1993 May; 213(3):981-7. PubMed ID: 8504837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana.
    Thelen JJ; Ohlrogge JB
    Plant J; 2002 Nov; 32(4):419-31. PubMed ID: 12445115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.