BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 11756677)

  • 1. Structure determination of micelle-like intermediates in amyloid beta -protein fibril assembly by using small angle neutron scattering.
    Yong W; Lomakin A; Kirkitadze MD; Teplow DB; Chen SH; Benedek GB
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):150-4. PubMed ID: 11756677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micellization of surfactin and its effect on the aggregate conformation of amyloid beta(1-40).
    Han Y; Huang X; Cao M; Wang Y
    J Phys Chem B; 2008 Nov; 112(47):15195-201. PubMed ID: 18983185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants.
    Lomakin A; Chung DS; Benedek GB; Kirschner DA; Teplow DB
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1125-9. PubMed ID: 8577726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane charge dependent states of the beta-amyloid fragment Abeta (16-35) with differently charged micelle aggregates.
    Grimaldi M; Scrima M; Esposito C; Vitiello G; Ramunno A; Limongelli V; D'Errico G; Novellino E; D'Ursi AM
    Biochim Biophys Acta; 2010 Mar; 1798(3):660-71. PubMed ID: 20045392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.
    Zhang-Haagen B; Biehl R; Nagel-Steger L; Radulescu A; Richter D; Willbold D
    PLoS One; 2016; 11(2):e0150267. PubMed ID: 26919121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of inhibition at multiple stages of amyloid-beta self-assembly provides mechanistic insight.
    Davis TJ; Soto-Ortega DD; Kotarek JA; Gonzalez-Velasquez FJ; Sivakumar K; Wu L; Wang Q; Moss MA
    Mol Pharmacol; 2009 Aug; 76(2):405-13. PubMed ID: 19483107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical analyses of synthetic amyloid-beta(1-42) aggregates before and after covalent cross-linking. Implications for deducing the structure of endogenous amyloid-beta oligomers.
    Moore BD; Rangachari V; Tay WM; Milkovic NM; Rosenberry TL
    Biochemistry; 2009 Dec; 48(49):11796-806. PubMed ID: 19916493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution NMR studies of recombinant Aβ(1-42): from the presence of a micellar entity to residual β-sheet structure in the soluble species.
    Wälti MA; Orts J; Vögeli B; Campioni S; Riek R
    Chembiochem; 2015 Mar; 16(4):659-69. PubMed ID: 25676345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocontrol of beta-amyloid peptide (1-40) fibril growth in the presence of a photosurfactant.
    Hamill AC; Lee CT
    J Phys Chem B; 2009 Apr; 113(17):6164-72. PubMed ID: 19344185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical aggregation concentration for the formation of early Amyloid-β (1-42) oligomers.
    Novo M; Freire S; Al-Soufi W
    Sci Rep; 2018 Jan; 8(1):1783. PubMed ID: 29379133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abeta amyloid fibrils possess a core structure highly resistant to hydrogen exchange.
    Kheterpal I; Zhou S; Cook KD; Wetzel R
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13597-601. PubMed ID: 11087832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of accelerated assembly of beta-amyloid filaments into fibrils by KLVFFK(6).
    Kim JR; Murphy RM
    Biophys J; 2004 May; 86(5):3194-203. PubMed ID: 15111432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical comparison of soluble amyloid-β(1-42) protofibrils, oligomers, and protofilaments.
    Nichols MR; Colvin BA; Hood EA; Paranjape GS; Osborn DC; Terrill-Usery SE
    Biochemistry; 2015 Apr; 54(13):2193-204. PubMed ID: 25756466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism.
    Carrotta R; Manno M; Bulone D; Martorana V; San Biagio PL
    J Biol Chem; 2005 Aug; 280(34):30001-8. PubMed ID: 15985437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin.
    Raman B; Ban T; Sakai M; Pasta SY; Ramakrishna T; Naiki H; Goto Y; Rao ChM
    Biochem J; 2005 Dec; 392(Pt 3):573-81. PubMed ID: 16053447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational ensemble and polymorphism of the all-atom Alzheimer's Aβ(37-42) amyloid peptide oligomers.
    Nguyen PH; Derreumaux P
    J Phys Chem B; 2013 May; 117(19):5831-40. PubMed ID: 23581814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of beta-amyloid fibril formation.
    Tiana G; Simona F; Broglia RA; Colombo G
    J Chem Phys; 2004 May; 120(17):8307-17. PubMed ID: 15267752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is?
    Coles M; Bicknell W; Watson AA; Fairlie DP; Craik DJ
    Biochemistry; 1998 Aug; 37(31):11064-77. PubMed ID: 9693002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.