BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11756745)

  • 1. Glial-defined boundaries in Xenopus CNS.
    Yoshida M
    Dev Neurosci; 2001; 23(4-5):299-306. PubMed ID: 11756745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial-defined rhombomere boundaries in developing Xenopus hindbrain.
    Yoshida M; Colman DR
    J Comp Neurol; 2000 Aug; 424(1):47-57. PubMed ID: 10888738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate filament proteins define different glial subpopulations.
    Yoshida M
    J Neurosci Res; 2001 Feb; 63(3):284-9. PubMed ID: 11170178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connexin 43 expression in glial cells of developing rhombomeres of Xenopus laevis.
    Katbamna B; Jelaso AM; Ide CF
    Int J Dev Neurosci; 2004 Feb; 22(1):47-55. PubMed ID: 15013078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system.
    Szaro BG; Gainer H
    Brain Res; 1988 Oct; 471(2):207-24. PubMed ID: 2460198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system.
    Oudega M; Marani E
    J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost.
    Arochena M; Anadón R; Díaz-Regueira SM
    J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats.
    Shibuya S; Miyamoto O; Itano T; Mori S; Norimatsu H
    Glia; 2003 Apr; 42(2):172-83. PubMed ID: 12655601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial fibrillary acidic protein and vimentin expression in the frog olfactory system during metamorphosis.
    Huang Q; Zhao S; Gaudin A; Quennedey B; Gascuel J
    Neuroreport; 2005 Sep; 16(13):1439-42. PubMed ID: 16110267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between glial organization and the establishment of nerve tracts in rat spinal cord.
    Brusco A; Gomez LA; López EM; Tagliaferro P; Saavedra JP
    Int J Neurosci; 1995 May; 82(1-2):25-31. PubMed ID: 7591513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunocytochemical localization of a novel radial glial intermediate filament protein.
    Cole GJ; Lee JA
    Brain Res Dev Brain Res; 1997 Jul; 101(1-2):225-38. PubMed ID: 9263595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient expression of Bis protein in midline radial glia in developing rat brainstem and spinal cord.
    Choi JS; Lee JH; Shin YJ; Lee JY; Yun H; Chun MH; Lee MY
    Cell Tissue Res; 2009 Jul; 337(1):27-36. PubMed ID: 19415333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RGMa inhibition promotes axonal growth and recovery after spinal cord injury.
    Hata K; Fujitani M; Yasuda Y; Doya H; Saito T; Yamagishi S; Mueller BK; Yamashita T
    J Cell Biol; 2006 Apr; 173(1):47-58. PubMed ID: 16585268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of transitin mRNA, a nestin-like intermediate filament family member, in chicken radial glia processes.
    Lee JA; Cole GJ
    J Comp Neurol; 2000 Mar; 418(4):473-83. PubMed ID: 10713574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotyping of radial glia and their glial derivatives during development of the rat spinal cord.
    Yang HY; Lieska N; Shao D; Kriho V; Pappas GD
    J Neurocytol; 1993 Jul; 22(7):558-71. PubMed ID: 8410077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homer expression in the Xenopus tadpole nervous system.
    Foa L; Jensen K; Rajan I; Bronson K; Gasperini R; Worley PF; Tu JC; Cline HT
    J Comp Neurol; 2005 Jun; 487(1):42-53. PubMed ID: 15861458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration.
    Dervan AG; Roberts BL
    J Comp Neurol; 2003 Apr; 458(3):293-306. PubMed ID: 12619082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the barrier-associated proteins EAP-300 and claustrin in the developing central nervous system.
    McCabe CF; Cole GJ
    Brain Res Dev Brain Res; 1992 Nov; 70(1):9-24. PubMed ID: 1473281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of glial cytoarchitecture in the frog spinal cord.
    Maier CE; Miller RH
    Dev Neurosci; 1995; 17(3):149-59. PubMed ID: 8549426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells.
    Zhu Y; Matsumoto T; Nagasawa T; Mackay F; Murakami F
    J Neurosci; 2015 Jun; 35(24):9211-24. PubMed ID: 26085643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.