These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1175693)

  • 21. Activation of the electrogenic sodium pump in guinea-pig auricles by internal sodium ions.
    Glitsch HG
    J Physiol; 1972 Feb; 220(3):565-82. PubMed ID: 5016038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CNS control of active sodium transport in muscle during progressive hypokalemia in the rat.
    Akaike N
    Brain Res; 1982 May; 239(2):575-81. PubMed ID: 6284307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myocardial protective effects of lidoflazine during ischemia and reperfusion.
    Guvendik L; Hynd J; Drake-Holland A; Parker DJ
    Thorac Cardiovasc Surg; 1990 Feb; 38(1):15-9. PubMed ID: 2309223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypokalemia downregulates cardiac alpha 1 and skeletal muscle alpha 2 isoforms of Na+,K(+)-ATPase in ferrets.
    Ng YC
    Biochem Biophys Res Commun; 1993 Oct; 196(1):39-46. PubMed ID: 8216318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The action of flunarizine and lidoflazine on isoprenaline induced cardiac lesions.
    Godfraind T; Khouri G; Sturbois X
    Arch Int Pharmacodyn Ther; 1980 Apr; 244(2):330-2. PubMed ID: 7406590
    [No Abstract]   [Full Text] [Related]  

  • 26. The kinetics of ouabain-sensitive ionic transport in the rabbit carotid artery.
    Heidlage JF; Jones AW
    J Physiol; 1981 Aug; 317():243-62. PubMed ID: 7310733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypokalaemia induces Ca²⁺ overload and Ca²⁺ waves in ventricular myocytes by reducing Na⁺,K⁺-ATPase α₂ activity.
    Aronsen JM; Skogestad J; Lewalle A; Louch WE; Hougen K; Stokke MK; Swift F; Niederer S; Smith NP; Sejersted OM; Sjaastad I
    J Physiol; 2015 Mar; 593(6):1509-21. PubMed ID: 25772299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamine and glutamate metabolism in renal cortex from potassium-depleted rats.
    Kamm DE; Strope GL
    Am J Physiol; 1973 Jun; 224(6):1241-8. PubMed ID: 4712134
    [No Abstract]   [Full Text] [Related]  

  • 29. K+ fluctuations in the extracellular spaces of cardiac muscle. Evidence from the voltage clamp and extracellular K+ - selective microelectrodes.
    Cohen I; Kline R
    Circ Res; 1982 Jan; 50(1):1-16. PubMed ID: 6274541
    [No Abstract]   [Full Text] [Related]  

  • 30. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Na-activated K channel, Na-K-Cl cotransport, and Na-K pump in [K]e changes during ischemia in rat heart.
    Mitani A; Shattock MJ
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H333-40. PubMed ID: 1324611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protection against β adrenoceptor agonist reduction of plasma potassium in severe but not in moderate hypokalemia.
    Tran CT; Kjeldsen K
    Fundam Clin Pharmacol; 2011 Aug; 25(4):452-61. PubMed ID: 21401714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycosphingolipids modulate renal phosphate transport in potassium deficiency.
    Zajicek HK; Wang H; Puttaparthi K; Halaihel N; Markovich D; Shayman J; Béliveau R; Wilson P; Rogers T; Levi M
    Kidney Int; 2001 Aug; 60(2):694-704. PubMed ID: 11473652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intra- and extracellular electrolytes and sarcolemmal ATPase in the failing heart due to pressure overload in dogs.
    Prasad K; Khatter JC; Bharadwaj B
    Cardiovasc Res; 1979 Feb; 13(2):95-104. PubMed ID: 223760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relaxing effects of dilazep and lidoflazine in dog cerebral and renal arteries independent of adenosine.
    Mustafa SJ; Nakagawa Y
    Pharmacology; 1988; 37(2):75-84. PubMed ID: 3212039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal responses of oxidative vs. glycolytic skeletal muscles to K+ deprivation: Na+ pumps and cell cations.
    Thompson CB; Choi C; Youn JH; McDonough AA
    Am J Physiol; 1999 Jun; 276(6):C1411-9. PubMed ID: 10362605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered renal expression of Na(+) transporters and ROMK in protein-deprived rats.
    Ruete MC; Carrizo LC; Bocanegra MV; Vallés PG
    Nephron Physiol; 2009; 111(3):p17-29. PubMed ID: 19202345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular concentrations of sodium, potassium and chloride in the lactating mammary gland and their relation to the secretory mechanism.
    Linzell JL; Peaker M
    J Physiol; 1971 Aug; 216(3):683-700. PubMed ID: 5105748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion transport in the heart atrial tissue of young and adult guinea-pigs and albino rats.
    Volín M; Vlk J
    Physiol Bohemoslov; 1979; 28(3):217-22. PubMed ID: 157489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.
    Kimzey SL; Willis JS
    J Gen Physiol; 1971 Dec; 58(6):634-49. PubMed ID: 5120391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.