These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11757578)

  • 1. The Martian and extraterrestrial UV radiation environment. Part II: further considerations on materials and design criteria for artificial ecosystems.
    Cockell CS
    Acta Astronaut; 2001 Dec; 49(11):631-40. PubMed ID: 11757578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Martian and extraterrestrial UV radiation environment--1. Biological and closed-loop ecosystem considerations.
    Cockell CS; Andrady AL
    Acta Astronaut; 1999 Jan; 44(1):53-62. PubMed ID: 11541762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-sustaining Mars colonies utilizing the North Polar Cap and the Martian atmosphere.
    Powell J; Maise G; Paniagua J
    Acta Astronaut; 2001; 48(5-12):737-65. PubMed ID: 11858273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.
    Rettberg P; Rabbow E; Panitz C; Horneck G
    Adv Space Res; 2004; 33(8):1294-301. PubMed ID: 15803617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ultraviolet environment of Mars: biological implications past, present, and future.
    Cockell CS; Catling DC; Davis WL; Snook K; Kepner RL; Lee P; McKay CP
    Icarus; 2000 Aug; 146(2):343-59. PubMed ID: 11543504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation: microbial evolution, ecology, and relevance to mars missions.
    Rothschild LJ; Cockell CS
    Mutat Res; 1999 Dec; 430(2):281-91. PubMed ID: 10631343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mars inflatable greenhouse analog.
    Sadler PD; Giacomelli GA
    Life Support Biosph Sci; 2002; 8(2):115-23. PubMed ID: 11987303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annual solar UV exposure and biological effective dose rates on the Martian surface.
    Patel MR; Bérces A; Kerékgyárto T; Rontó G; Lammer H; Zarnecki JC
    Adv Space Res; 2004; 33(8):1247-52. PubMed ID: 15803610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit.
    Stalport F; Rouquette L; Poch O; Dequaire T; Chaouche-Mechidal N; Payart S; Szopa C; Coll P; Chaput D; Jaber M; Raulin F; Cottin H
    Astrobiology; 2019 Aug; 19(8):1037-1052. PubMed ID: 31314573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical definition and proposed concept for the manned infrastructure of a lunar outpost.
    Clement G; Braak L; Arenales O
    Acta Astronaut; 1995; 36(8-12):559-65. PubMed ID: 11540988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar UV irradiation conditions on the surface of Mars.
    Rontó G; Bérces A; Lammer H; Cockell CS; Molina-Cuberos GJ; Patel MR; Selsis F
    Photochem Photobiol; 2003 Jan; 77(1):34-40. PubMed ID: 12856880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Considerations of design for life support systems.
    Ashida A
    Adv Space Res; 2003; 31(7):1805-9. PubMed ID: 14503521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.
    Wassmann M; Moeller R; Rabbow E; Panitz C; Horneck G; Reitz G; Douki T; Cadet J; Stan-Lotter H; Cockell CS; Rettberg P
    Astrobiology; 2012 May; 12(5):498-507. PubMed ID: 22680695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterilisation properties of the Mars surface and atmospheric environment.
    Moreau D; Muller C
    Adv Space Res; 2003; 31(1):97-102. PubMed ID: 12577960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.
    Noblet A; Stalport F; Guan YY; Poch O; Coll P; Szopa C; Cloix M; Macari F; Raulin F; Chaput D; Cottin H
    Astrobiology; 2012 May; 12(5):436-44. PubMed ID: 22680690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The apparatus "Photostat-I" for simulating Martian environmental conditions.
    Zaar EI; Zelikson VG; Kitaigorodsky MG; Lozina-Lozinsky LK; Koshelev GV; Rybin MA
    Life Sci Space Res; 1970; 8():62-7. PubMed ID: 12664920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing.
    Shiwei N; Dritsas S; Fernandez JG
    PLoS One; 2020; 15(9):e0238606. PubMed ID: 32936806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of light transmission and distribution materials for Lunar and Martian bioregenerative life support.
    Cuello JL; Sadler P; Jack D; Ono E; Jordan KA
    Life Support Biosph Sci; 1998; 5(4):389-402. PubMed ID: 11871446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Martian regolith as space radiation shielding.
    Simonsen LC; Nealy JE; Townsend LW; Wilson JW
    J Spacecr Rockets; 1991; 28(1):7-8. PubMed ID: 11537624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lessons learned studying design issues for lunar and Mars settlements.
    Litton CE
    Life Support Biosph Sci; 1997; 4(3-4):127-44. PubMed ID: 11542289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.