These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1175773)

  • 21. Purification and reconstitution of the 32Pi-ATP exchange activity of bovine chromaffin granule membrane.
    Roisin MP; Henry JP
    Biochim Biophys Acta; 1982 Aug; 681(2):292-9. PubMed ID: 7115699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies of energy-linked reactions: stimulation of the mitochondrial Pi-ATP exchange reaction by oleoyl lipoate, oleoyl CoA and oleoyl phosphate.
    Hyams RL; Griffiths DE
    Biochem Biophys Res Commun; 1978 Jan; 80(1):104-11. PubMed ID: 341892
    [No Abstract]   [Full Text] [Related]  

  • 23. Partial resolution and reconstitution of the Ca++ transport system of sarcoplasmic reticulum.
    Mac Lennan DH
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():507-17. PubMed ID: 4283220
    [No Abstract]   [Full Text] [Related]  

  • 24. Energy metabolism in mitochondria.
    Heldt HW
    Angew Chem Int Ed Engl; 1972 Sep; 11(9):792-8. PubMed ID: 4628612
    [No Abstract]   [Full Text] [Related]  

  • 25. On the coupling between the transport of phosphate and adenine nucleotides in rat liver mitochondria.
    McGivan JD; Grebe K; Klingenberg M
    Biochem Biophys Res Commun; 1971 Dec; 45(6):1533-41. PubMed ID: 5128194
    [No Abstract]   [Full Text] [Related]  

  • 26. Physiologically-induced loose coupling of brown-adipose-tissue mitochondria correlated to endogenous fatty acids and adenosine phosphates.
    Pedersen JI; Grav HJ
    Eur J Biochem; 1972 Jan; 25(1):75-83. PubMed ID: 5023583
    [No Abstract]   [Full Text] [Related]  

  • 27. Restoration of Pi-ATP exchange in the oligomycin-sensitive ATPase: effect of a coupling factor.
    Joshi S; Shaikh F; Sanadi DR
    Biochem Biophys Res Commun; 1975 Aug; 65(4):1371-7. PubMed ID: 150273
    [No Abstract]   [Full Text] [Related]  

  • 28. Control of the energy coupling modes in mitochondria by mercurials.
    Southard JH; Green DE
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1310-6. PubMed ID: 4477015
    [No Abstract]   [Full Text] [Related]  

  • 29. [The effect of ATP on the malate regulation of oxidative phosphorylation in brain mitochondria].
    Samartsev VN
    Ukr Biokhim Zh (1978); 1990; 62(2):104-6. PubMed ID: 2368180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of rat liver mitochondrial oxidative phosphorylation by sulfobromophthalein.
    Killenberg PG; Hoppel CL
    Mol Pharmacol; 1974 Jan; 10(1):108-18. PubMed ID: 4152528
    [No Abstract]   [Full Text] [Related]  

  • 32. The rapid labeling of adenosine triphosphate by 32P-labeled inorganic phosphate and the exchange of phosphate oxygens as related to conformational coupling in oxidative phosphorylation.
    Cross RL; Boyer PD
    Biochemistry; 1975 Jan; 14(2):392-8. PubMed ID: 1168064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATP-dependent phosphate transport in sarcoplasmic reticulum and reconstituted proteoliposomes.
    Carley WW; Racker E
    Biochim Biophys Acta; 1982 May; 680(2):187-93. PubMed ID: 6212081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Oxidative phosphorylation and the activity of mitochondrial enzymes in different regions of animal brains following repeated electro-convulsive seizures].
    Pogodaev KI; Anan'eva GV; Sokhieva AA; Timofeev BIa
    Vopr Med Khim; 1970; 16(5):469-77. PubMed ID: 4332080
    [No Abstract]   [Full Text] [Related]  

  • 35. Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium.
    Kumar V; Bal A; Gill KD
    Brain Res; 2008 Sep; 1232():94-103. PubMed ID: 18691561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [ATP content, oxidative phosphorylation and ion transport in membrane structures of denervated liver].
    Petrovich IuA; Lemkina LM; Lebkova NP; Vavilova TP
    Dokl Akad Nauk SSSR; 1974 Jul; 216(5):1182-4. PubMed ID: 4843932
    [No Abstract]   [Full Text] [Related]  

  • 37. [Energy metabolism in the chick brain in ontogenesis].
    Simonian AA
    Vopr Biokhim Mozga; 1972; 7(0):158-71. PubMed ID: 4278942
    [No Abstract]   [Full Text] [Related]  

  • 38. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical and ultrastructural aspects of Ca2+ transport by mitochondria of the hepatopancreas of the blue crab Callinectes sapidus.
    Chen CH; Greenawalt JW; Lehninger AL
    J Cell Biol; 1974 May; 61(2):301-15. PubMed ID: 4827906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of aurovertin on energy-linked processes related to oxidative phosphorylation.
    Lenaz G
    Biochem Biophys Res Commun; 1965 Oct; 21(2):170-5. PubMed ID: 4286024
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.