These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11757915)

  • 1. The effect of exit radii on intraglottal pressure distributions in the convergent glottis.
    Scherer RC; De Witt KJ; Kucinschi BR
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2267-9. PubMed ID: 11757915
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of glottal angle on intraglottal pressure.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of entrance radii on intraglottal pressure distributions in the divergent glottis.
    Li S; Scherer RC; Wan M; Wang S
    J Acoust Soc Am; 2012 Feb; 131(2):1371-7. PubMed ID: 22352510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of phonation threshold pressure: a critical review and clinical implications.
    Plexico LW; Sandage MJ; Faver KY
    Am J Speech Lang Pathol; 2011 Nov; 20(4):348-66. PubMed ID: 21856967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2014 Nov; 136(5):EL369-75. PubMed ID: 25373995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure distributions in a static physical model of the uniform glottis: entrance and exit coefficients.
    Fulcher LP; Scherer RC; Powell T
    J Acoust Soc Am; 2011 Mar; 129(3):1548-53. PubMed ID: 21428518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Non-linear model of glottic vibration. Potential clinical implications].
    Giovanni A; Ouaknine M; Garrel R; Ayache S; Robert D
    Rev Laryngol Otol Rhinol (Bord); 2002; 123(5):273-7. PubMed ID: 12741286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2007 Oct; 122(4):2279-95. PubMed ID: 17902864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of collision on the flow through in-vitro rigid models of the vocal folds.
    Deverge M; Pelorson X; Vilain C; Lagrée PY; Chentouf F; Willems J; Hirschberg A
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3354-62. PubMed ID: 14714815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.