These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 11757946)

  • 1. Noisy speech recognition using de-noised multiresolution analysis acoustic features.
    Chan CP; Ching PC; Lee T
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2567-74. PubMed ID: 11757946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception.
    Schädler MR; Warzybok A; Ewert SD; Kollmeier B
    J Acoust Soc Am; 2016 May; 139(5):2708. PubMed ID: 27250164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition.
    Schädler M; Meyer BT; Kollmeier B
    J Acoust Soc Am; 2012 May; 131(5):4134-51. PubMed ID: 22559385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition.
    Skowronski MD; Harris JG
    J Acoust Soc Am; 2004 Sep; 116(3):1774-80. PubMed ID: 15478444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of acoustic parameters for consonant voicing classification in clean and telephone speech.
    Lee SM; Choi JY
    J Acoust Soc Am; 2012 Mar; 131(3):EL197-202. PubMed ID: 22423808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational speech segregation based on an auditory-inspired modulation analysis.
    May T; Dau T
    J Acoust Soc Am; 2014 Dec; 136(6):3350. PubMed ID: 25480079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A speech enhancement scheme incorporating spectral expansion evaluated with simulated loss of frequency selectivity.
    Lyzenga J; Festen JM; Houtgast T
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1145-57. PubMed ID: 12243161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvements in intelligibility of noisy reverberant speech using a binaural subband adaptive noise-cancellation processing scheme.
    Shields PW; Campbell DR
    J Acoust Soc Am; 2001 Dec; 110(6):3232-42. PubMed ID: 11785824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of fricative consonants for speech enhancement in hearing devices.
    Kong YY; Mullangi A; Kokkinakis K
    PLoS One; 2014; 9(4):e95001. PubMed ID: 24747721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition.
    Schädler MR; Kollmeier B
    J Acoust Soc Am; 2015 Apr; 137(4):2047-59. PubMed ID: 25920855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of formant-like features on an automatic vowel classification task.
    de Wet F; Weber K; Boves L; Cranen B; Bengio S; Bourlard H
    J Acoust Soc Am; 2004 Sep; 116(3):1781-92. PubMed ID: 15478445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New features using robust MVDR spectrum of filtered autocorrelation sequence for robust speech recognition.
    Seyedin S; Ahadi SM; Gazor S
    ScientificWorldJournal; 2013; 2013():634160. PubMed ID: 24501584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal envelope compensation for robust phoneme recognition using modulation spectrum.
    Ganapathy S; Thomas S; Hermansky H
    J Acoust Soc Am; 2010 Dec; 128(6):3769-80. PubMed ID: 21218908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of stop place in consonant-vowel contexts using feature extrapolation of acoustic-phonetic features in telephone speech.
    Lee JW; Choi JY; Kang HG
    J Acoust Soc Am; 2012 Feb; 131(2):1536-46. PubMed ID: 22352523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech reception with different bilateral directional processing schemes: Influence of binaural hearing, audiometric asymmetry, and acoustic scenario.
    Neher T; Wagener KC; Latzel M
    Hear Res; 2017 Sep; 353():36-48. PubMed ID: 28783570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Hearing Device Spectral Enhancement Driven by Non-Negative Sparse Coding-Based Residual Noise Reduction.
    Kim SM
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of the Turkish matrix sentence test.
    Zokoll MA; Fidan D; Türkyılmaz D; Hochmuth S; Ergenç İ; Sennaroğlu G; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():51-61. PubMed ID: 26443486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.