BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11758373)

  • 1. [Characteristics and quantitative simulation of stomatal conductance of Aneurolepidium chinense].
    Wang Y; He X; Zhou G
    Ying Yong Sheng Tai Xue Bao; 2001 Aug; 12(4):517-21. PubMed ID: 11758373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characteristics of canopy stomatal conductance of Platycladus orientalis and its responses to environmental factors in the mountainous area of North China].
    Liu WN; Jia JB; Yu XX; Jia GD; Hou GR
    Ying Yong Sheng Tai Xue Bao; 2017 Oct; 28(10):3217-3226. PubMed ID: 29692139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis on ecophysiological characteristics of leaf photosynthesis of Aneurolepidium chinense in songnen grassland].
    Wang Y; Zhou G
    Ying Yong Sheng Tai Xue Bao; 2001 Feb; 12(1):75-9. PubMed ID: 11813438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canopy-scale relationships between stomatal conductance and photosynthesis in irrigated rice.
    Ono K; Maruyama A; Kuwagata T; Mano M; Takimoto T; Hayashi K; Hasegawa T; Miyata A
    Glob Chang Biol; 2013 Jul; 19(7):2209-20. PubMed ID: 23504912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal change in response of stomatal conductance to vapor pressure deficit and three phytohormones in three tree species.
    Li J; Zhang GZ; Li X; Wang Y; Wang FZ; Li XM
    Plant Signal Behav; 2019; 14(12):1682341. PubMed ID: 31668123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Simulation of rice canopy evapotranspiration and water use efficiency under free-air CO2 enrichment].
    Wang MN; Luo WH; Sun YK; Zhu JG
    Ying Yong Sheng Tai Xue Bao; 2008 Nov; 19(11):2497-502. PubMed ID: 19238853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in stomatal conductance along grass blades reflect changes in leaf structure.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2012 Jun; 35(6):1040-9. PubMed ID: 22146058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological effects of kaolin applications in well-irrigated and water-stressed walnut and almond trees.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2006 Jul; 98(1):267-75. PubMed ID: 16735404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of gas exchange to humidity in populations of three herbs from environments differing in atmospheric water.
    Bunce JA
    Oecologia; 1986 Dec; 71(1):117-120. PubMed ID: 28312092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transpiration and canopy conductance in a eucalypt plantation using shallow saline groundwater.
    Morris J; Mann L; Collopy J
    Tree Physiol; 1998; 18(8_9):547-555. PubMed ID: 12651341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2014 Jan; 37(1):132-9. PubMed ID: 23701708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia.
    Kosugi Y; Takanashi S; Matsuo N; Nik AR
    Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors].
    Zhao P; Rao X; Ma L; Cai X; Zeng X
    Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1149-56. PubMed ID: 17044483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest.
    Renninger HJ; Carlo NJ; Clark KL; Schäfer KV
    Front Plant Sci; 2015; 6():297. PubMed ID: 25999966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest.
    Cai T; Flanagan LB; Jassal RS; Black TA
    Plant Cell Environ; 2008 Apr; 31(4):435-53. PubMed ID: 18182019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of vapor pressure on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings.
    Meinzer FC
    Oecologia; 1982 Aug; 54(2):236-242. PubMed ID: 28311434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.