These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 11758406)
1. [Relationship between decline disease of exotic pines(Pinus taeda and P. eliottii) and forest stand and environmental factors]. Shu Q; Zou Y; Yang G; Zhu Q; Huang C Ying Yong Sheng Tai Xue Bao; 2001 Jun; 12(3):331-4. PubMed ID: 11758406 [TBL] [Abstract][Full Text] [Related]
2. [Causal factors of decline disease in exotic pine (Pinus taeda and P. elliottii) plantations]. Shu Q; Yang G; Zou Y; Tang J; Huang C Ying Yong Sheng Tai Xue Bao; 2001 Jun; 12(3):326-30. PubMed ID: 11758405 [TBL] [Abstract][Full Text] [Related]
3. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Warren JM; Iversen CM; Garten CT; Norby RJ; Childs J; Brice D; Evans RM; Gu L; Thornton P; Weston DJ Tree Physiol; 2012 Jun; 32(6):799-813. PubMed ID: 22210530 [TBL] [Abstract][Full Text] [Related]
4. Response of transpiration to rain pulses for two tree species in a semiarid plantation. Chen L; Zhang Z; Zeppel M; Liu C; Guo J; Zhu J; Zhang X; Zhang J; Zha T Int J Biometeorol; 2014 Sep; 58(7):1569-81. PubMed ID: 24510059 [TBL] [Abstract][Full Text] [Related]
5. [Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land]. Wu X; Jiang F; Li X; Xue Y; Qiu S Ying Yong Sheng Tai Xue Bao; 2004 Dec; 15(12):2225-8. PubMed ID: 15825431 [TBL] [Abstract][Full Text] [Related]
6. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations. Manoli G; Domec JC; Novick K; Oishi AC; Noormets A; Marani M; Katul G Glob Chang Biol; 2016 Jun; 22(6):2238-54. PubMed ID: 26762609 [TBL] [Abstract][Full Text] [Related]
7. Thinning effects on litterfall remaining after 8 years and improved stand resilience in Aleppo pine afforestation (SE Spain). Jiménez MN; Navarro FB J Environ Manage; 2016 Mar; 169():174-83. PubMed ID: 26748384 [TBL] [Abstract][Full Text] [Related]
8. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations. Domec JC; Ogée J; Noormets A; Jouangy J; Gavazzi M; Treasure E; Sun G; McNulty SG; King JS Tree Physiol; 2012 Jun; 32(6):707-23. PubMed ID: 22467712 [TBL] [Abstract][Full Text] [Related]
9. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation. Li S; Su J; Liu W; Lang X; Huang X; Jia C; Zhang Z; Tong Q PLoS One; 2015; 10(9):e0135946. PubMed ID: 26397366 [TBL] [Abstract][Full Text] [Related]
10. Carbon and nitrogen status of litterfall, litter decomposition and soil in even-aged larch, red pine and rigitaeda pine plantations. Kim C; Jeong J; Cho HS; Son Y J Plant Res; 2010 Jul; 123(4):403-9. PubMed ID: 20195884 [TBL] [Abstract][Full Text] [Related]
11. Exome Resequencing Reveals Evolutionary History, Genomic Diversity, and Targets of Selection in the Conifers Pinus taeda and Pinus elliottii. Acosta JJ; Fahrenkrog AM; Neves LG; Resende MFR; Dervinis C; Davis JM; Holliday JA; Kirst M Genome Biol Evol; 2019 Feb; 11(2):508-520. PubMed ID: 30689841 [TBL] [Abstract][Full Text] [Related]
12. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence. Angstmann JL; Ewers BE; Kwon H Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635 [TBL] [Abstract][Full Text] [Related]
13. [Sap flux density in response to rainfall pulses for Pinus tabuliformis and Hippophae rhamnoides from mixed plantation in hilly Loess Plateau]. Lu SB; Chen YM; Tang YK; Wu X; Wen J Ying Yong Sheng Tai Xue Bao; 2017 Nov; 28(11):3469-3478. PubMed ID: 29692088 [TBL] [Abstract][Full Text] [Related]
14. Modeling and mapping basal area of Pinus taeda L. plantation using airborne LiDAR data. Silva CA; Klauberg C; Hudak AT; Vierling LA; Fennema SJ; Corte APD An Acad Bras Cienc; 2017; 89(3):1895-1905. PubMed ID: 28813098 [TBL] [Abstract][Full Text] [Related]
15. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Curiel Yuste J; Janssens IA; Carrara A; Meiresonne L; Ceulemans R Tree Physiol; 2003 Dec; 23(18):1263-70. PubMed ID: 14652226 [TBL] [Abstract][Full Text] [Related]
16. [Analysis of natural regeneration barriers of Pinus sylvestris var. mongolica plantation on sandy land]. Zeng D; You W; Fan Z; Liu M Ying Yong Sheng Tai Xue Bao; 2002 Mar; 13(3):257-61. PubMed ID: 12132148 [TBL] [Abstract][Full Text] [Related]
17. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation. Aspinwall MJ; King JS; McKeand SE; Domec JC Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004 [TBL] [Abstract][Full Text] [Related]
18. Water availability and genetic effects on water relations of loblolly pine (Pinus taeda) stands. Gonzalez-Benecke CA; Martin TA Tree Physiol; 2010 Mar; 30(3):376-92. PubMed ID: 20071360 [TBL] [Abstract][Full Text] [Related]
19. Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation. Silva CA; Klauberg C; Hudak AT; Vierling LA; Liesenberg V; Bernett LG; Scheraiber CF; Schoeninger ER An Acad Bras Cienc; 2018; 90(1):295-309. PubMed ID: 29641763 [TBL] [Abstract][Full Text] [Related]
20. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates. Jacquet JS; Bosc A; O'Grady A; Jactel H Tree Physiol; 2014 Apr; 34(4):367-76. PubMed ID: 24736390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]