These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 11758568)

  • 41. The biological clock of Neurospora in a microgravity environment.
    Ferraro JS; Fuller CA; Sulzman FM
    Adv Space Res; 1989; 9(11):251-60. PubMed ID: 11537340
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology.
    Torday JS
    Adv Space Res; 2003; 32(8):1569-76. PubMed ID: 15000128
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells.
    Rösner H; Wassermann T; Möller W; Hanke W
    Protoplasma; 2006 Dec; 229(2-4):225-34. PubMed ID: 17180506
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of altered gravity on the cytochemical localization of cytochrome oxidase activity in central and peripheral gravisensory systems in developing cichlid fish.
    Paulus U; Nindl G; Körtje KH; Slenzka K; Neubert J; Rahmann H
    Adv Space Res; 1996; 17(6-7):285-8. PubMed ID: 11538631
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of longitudinal whole animal clinorotation on lens, tail, and limb regeneration in urodeles.
    Anton HJ; Grigoryan EN; Mitashov VI
    Adv Space Res; 1996; 17(6-7):55-65. PubMed ID: 11538637
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plant cells in vitro under altered gravity.
    Klymchuk DO
    J Gravit Physiol; 1998 Jul; 5(1):P147-8. PubMed ID: 11542330
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Growth and cell wall changes in rice roots during spaceflight.
    Hoson T; Soga K; Wakabayashi K; Kamisaka S; Tanimoto E
    Plant Soil; 2003 Aug; 255(1):19-26. PubMed ID: 14631940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cellular changes in wheat seedlings during orbital flight.
    Edwards BF; Gray SW
    Life Sci Space Res; 1971; 9():113-8. PubMed ID: 11942355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drosophila melanogaster, a model system for comparative studies on the responses to real and simulated microgravity.
    Marco R; Laván DA; van Loon JJ; Leandro LJ; Larkin OJ; Dijkstra C; Anthony P; Villa A; Davey MR; Lowe KC; Power JB; Medina FJ
    J Gravit Physiol; 2007 Jul; 14(1):P125-6. PubMed ID: 18372731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microtubule self-organization is gravity-dependent.
    Papaseit C; Pochon N; Tabony J
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8364-8. PubMed ID: 10880562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells.
    Rijken PJ; de Groot RP; Kruijer W; de Laat SW; Verkleij AJ; Boonstra J
    Adv Space Res; 1992; 12(1):145-52. PubMed ID: 11536950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions.
    Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D
    Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Mechanism of automorphic curvature in rice coleoptiles under simulated microgravity conditions].
    Saiki M; Wakabayashi K; Kamisaka S; Yamashita M; Hoson T
    Biol Sci Space; 2000 Oct; 14(3):188-9. PubMed ID: 12561855
    [No Abstract]   [Full Text] [Related]  

  • 54. Swimming velocity of Paramecium under the conditions of weightlessness.
    Hemmersbach-Krause R; Briegleb W; Vogel K; Hader DP
    Acta Protozool; 1993 Oct; 32(4):229-36. PubMed ID: 11541117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.
    Shimazu T; Yuda T; Miyamoto K; Yamashita M; Ueda J
    Adv Space Res; 2001; 27(5):995-1000. PubMed ID: 11596646
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Early development in aquatic vertebrates in near weightlessness during the D-2 Mission STATEX project.
    Neubert J; Schatz A; Briegleb W; Bromeis B; Linke-Hommes A; Rahmann H; Slenzka K; Horn E
    Adv Space Res; 1996; 17(6-7):275-9. PubMed ID: 11538629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Orientation of Paramecium under the conditions of weightlessness.
    Hemmersbach-Krause R; Briegleb W; Hader DP; Vogel K; Grothe D; Meyer I
    J Eukaryot Microbiol; 1993; 40(4):439-46. PubMed ID: 11536536
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations.
    Tabony J; Rigotti N; Glade N; Cortès S
    Biophys Chem; 2007 May; 127(3):172-80. PubMed ID: 17321031
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gravity perception and signal transduction in single cells.
    Block I; Wolke A; Briegleb W; Ivanova K
    Acta Astronaut; 1995; 36(8-12):479-86. PubMed ID: 11540980
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Morphogenesis and cell wall changes in maize shoots under simulated microgravity conditions.
    Hoson T; Kamisaka S; Yamashita M; Masuda Y
    Biol Sci Space; 1995 Dec; 9(4):337-44. PubMed ID: 11541895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.