These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11758743)

  • 1. Quantitative comparison of performance of isothermal and temperature-programmed gas chromatography.
    Blumberg LM; Klee MS
    J Chromatogr A; 2001 Nov; 933(1-2):13-26. PubMed ID: 11758743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metrics of separation performance in chromatography: Part 2. Separation performance of a heating ramp in temperature-programmed gas chromatography.
    Blumberg LM
    J Chromatogr A; 2012 Jun; 1244():148-60. PubMed ID: 22621891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metrics of separation performance in chromatography. Part 1. Definitions and application to static analyses.
    Blumberg LM
    J Chromatogr A; 2011 Aug; 1218(32):5375-85. PubMed ID: 21742338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution prediction and optimization of temperature programme in comprehensive two-dimensional gas chromatography.
    Lu X; Kong H; Li H; Ma C; Tian J; Xu G
    J Chromatogr A; 2005 Sep; 1086(1-2):175-84. PubMed ID: 16130671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak sweeping and gating using thermal gradient gas chromatography.
    Contreras JA; Rockwood AL; Tolley HD; Lee ML
    J Chromatogr A; 2013 Feb; 1278():160-5. PubMed ID: 23352829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic plots for programmed temperature gas chromatography.
    Jespers S; Roeleveld K; Lynen F; Broeckhoven K; Desmet G
    J Chromatogr A; 2016 Jun; 1450():94-100. PubMed ID: 27179678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature Programming of the Second Dimension in Comprehensive Two-Dimensional Gas Chromatography.
    Chow HJ; Górecki T
    Anal Chem; 2017 Aug; 89(16):8207-8211. PubMed ID: 28756665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elution parameters in constant-pressure, single-ramp temperature-programmed gas chromatography.
    Blumberg LM; Klee MS
    J Chromatogr A; 2001 May; 918(1):113-20. PubMed ID: 11403437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed gas chromatography with direct resistively-heated column (ultra fast module-GC)-separation measure (S) and other chromatographic parameters under different analysis conditions for samples of different complexities and volatilities.
    Bicchi C; Brunelli C; Cordero C; Rubiolo P; Galli M; Sironi A
    J Chromatogr A; 2005 Apr; 1071(1-2):3-12. PubMed ID: 15865167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing a constant peak width transform for isothermal gas chromatography.
    Nadeau JS; Wilson RB; Fitz BD; Reed JT; Synovec RE
    J Chromatogr A; 2011 Jun; 1218(23):3718-24. PubMed ID: 21536294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention models for programmed gas chromatography.
    Castello G; Moretti P; Vezzani S
    J Chromatogr A; 2009 Mar; 1216(10):1607-23. PubMed ID: 19081102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A direct resistively heated gas chromatography column with heating and sensing on the same nickel element.
    Stearns SD; Cai H; Koehn JA; Brisbin M; Cowles C; Bishop C; Puente S; Ashworth D
    J Chromatogr A; 2010 Jul; 1217(27):4629-38. PubMed ID: 20564802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of high-speed gas chromatography using synchronized dual-valve injection and resistively heated temperature programming.
    Reid VR; McBrady AD; Synovec RE
    J Chromatogr A; 2007 May; 1148(2):236-43. PubMed ID: 17386929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow optimization in one-dimensional and comprehensive two-dimensional gas chromatography.
    Blumberg LM
    J Chromatogr A; 2018 Feb; 1536():27-38. PubMed ID: 28866250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of retention times and efficiency in linear gradient programmed pressure analysis on capillary columns.
    Vezzani S; Moretti P; Castello G
    J Chromatogr A; 2004 Nov; 1055(1-2):141-50. PubMed ID: 15560490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable selectivity for GC with series-coupled columns using pulsed heating of the second column.
    Whiting J; Sacks R
    Anal Chem; 2003 May; 75(10):2215-23. PubMed ID: 12918958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High temperature multidimensional gas chromatographic approach for improved separation of triacylglycerols in olive oil.
    Waktola HD; Kulsing C; Nolvachai Y; Marriott PJ
    J Chromatogr A; 2018 May; 1549():77-84. PubMed ID: 29588099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating Capillary Gas Chromatographic Separations including Thermal Gradient Conditions.
    Tolley HD; Avila S; Iverson BD; Foster AR; Hawkins AR; Tolley SE; Lee ML
    Anal Chem; 2021 Feb; 93(4):2291-2298. PubMed ID: 33405883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of chromatographic conditions on separation in comprehensive gas chromatography.
    Ong R; Marriott P; Morrison P; Haglund P
    J Chromatogr A; 2002 Jul; 962(1-2):135-52. PubMed ID: 12198958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metrics of separation performance in chromatography: Part 3: General separation performance of linear solvent strength gradient liquid chromatography.
    Blumberg LM; Desmet G
    J Chromatogr A; 2015 Sep; 1413():9-21. PubMed ID: 26316033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.