BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 11759015)

  • 1. Cell-interactive alginate hydrogels for bone tissue engineering.
    Alsberg E; Anderson KW; Albeiruti A; Franceschi RT; Mooney DJ
    J Dent Res; 2001 Nov; 80(11):2025-9. PubMed ID: 11759015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate/poly(amidoamine) injectable hybrid hydrogel for cell delivery.
    Patil SS; Nune KC; Misra R
    J Biomater Appl; 2018 Aug; 33(2):295-314. PubMed ID: 30096996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach.
    Comisar WA; Kazmers NH; Mooney DJ; Linderman JJ
    Biomaterials; 2007 Oct; 28(30):4409-17. PubMed ID: 17619056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate hydrogels containing cell-interactive beads for bone formation.
    Bhat A; Hoch AI; Decaris ML; Leach JK
    FASEB J; 2013 Dec; 27(12):4844-52. PubMed ID: 24005905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.
    Huang Y; Yao M; Zheng X; Liang X; Su X; Zhang Y; Lu A; Zhang L
    Biomacromolecules; 2015 Nov; 16(11):3499-507. PubMed ID: 26393272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity.
    Jeon O; Powell C; Ahmed SM; Alsberg E
    Tissue Eng Part A; 2010 Sep; 16(9):2915-25. PubMed ID: 20486798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel microstructure regulates proliferation and differentiation of MC3T3-E1 cells encapsulated in alginate beads.
    Lee BH; Li B; Guelcher SA
    Acta Biomater; 2012 May; 8(5):1693-702. PubMed ID: 22306825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion and growth of bone marrow stromal cells on modified alginate hydrogels.
    Lawson MA; Barralet JE; Wang L; Shelton RM; Triffitt JT
    Tissue Eng; 2004; 10(9-10):1480-91. PubMed ID: 15588407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of spacer arm length between adhesion ligand and alginate hydrogel on stem cell differentiation.
    Lee JW; Kim H; Lee KY
    Carbohydr Polym; 2016 Mar; 139():82-9. PubMed ID: 26794950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering.
    Burdick JA; Anseth KS
    Biomaterials; 2002 Nov; 23(22):4315-23. PubMed ID: 12219821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual peptide-presenting hydrogels for controlling the phenotype of PC12 cells.
    Lee JW; Lee KY
    Colloids Surf B Biointerfaces; 2017 Apr; 152():36-41. PubMed ID: 28068609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications.
    Sandvig I; Karstensen K; Rokstad AM; Aachmann FL; Formo K; Sandvig A; Skjåk-Bræk G; Strand BL
    J Biomed Mater Res A; 2015 Mar; 103(3):896-906. PubMed ID: 24826938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate hydrogels as synthetic extracellular matrix materials.
    Rowley JA; Madlambayan G; Mooney DJ
    Biomaterials; 1999 Jan; 20(1):45-53. PubMed ID: 9916770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
    Zhang L; Rakotondradany F; Myles AJ; Fenniri H; Webster TJ
    Biomaterials; 2009 Mar; 30(7):1309-20. PubMed ID: 19073342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.
    Behravesh E; Zygourakis K; Mikos AG
    J Biomed Mater Res A; 2003 May; 65(2):260-70. PubMed ID: 12734821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering.
    Qiao PY; Li FF; Dong LM; Xu T; Xie QF
    J Zhejiang Univ Sci B; 2014 Apr; 15(4):382-92. PubMed ID: 24711359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide.
    Shin H; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG
    Biomaterials; 2004 Feb; 25(5):895-906. PubMed ID: 14609678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of magnesium ions into photo-crosslinked alginate hydrogel enhanced cell adhesion ability.
    Yin M; Xu F; Ding H; Tan F; Song F; Wang J
    J Tissue Eng Regen Med; 2015 Sep; 9(9):1088-92. PubMed ID: 25694165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strontium- and zinc-alginate hydrogels for bone tissue engineering.
    Place ES; Rojo L; Gentleman E; Sardinha JP; Stevens MM
    Tissue Eng Part A; 2011 Nov; 17(21-22):2713-22. PubMed ID: 21682547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alginate hydrogel containing polyproline-rich peptides on osteoblast differentiation.
    Rubert M; Monjo M; Lyngstadaas SP; Ramis JM
    Biomed Mater; 2012 Oct; 7(5):055003. PubMed ID: 22782012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.